Image Haze Removal Based on Superpixels and Markov Random Field
Image haze removal is critical for autonomous driving. However, it is a challenging task for the existing image dehazing algorithms to eliminate the block effect completely and handle objects similar to light (such as snowy objects and white buildings). To address this problem, we propose a novel si...
Guardado en:
Autores principales: | Yibo Tan, Guoyu Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a09ce9411daa49a5ac491306854abaca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Region Adaptive Single Image Dehazing
por: Changwon Kim
Publicado: (2021) -
Robust Single-Image Dehazing
por: Changwon Kim
Publicado: (2021) -
Attention Enhanced Serial Unet++ Network for Removing Unevenly Distributed Haze
por: Wenxuan Zhao, et al.
Publicado: (2021) -
Enhanced performance of Dark-Nets for brain tumor classification and segmentation using colormap-based superpixel techniques
por: Sakshi Ahuja, et al.
Publicado: (2022) -
Superpixel-Based Singular Spectrum Analysis for Effective Spatial-Spectral Feature Extraction
por: Subhashree Subudhi, et al.
Publicado: (2021)