Automated Training of Deep Convolutional Neural Networks for Cell Segmentation

Abstract Deep Convolutional Neural Networks (DCNN) have recently emerged as superior for many image segmentation tasks. The DCNN performance is however heavily dependent on the availability of large amounts of problem-specific training samples. Here we show that DCNNs trained on ground truth created...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Sajith Kecheril Sadanandan, Petter Ranefall, Sylvie Le Guyader, Carolina Wählby
Format: article
Langue:EN
Publié: Nature Portfolio 2017
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/a09dea75f9f64b2fb9d607e6e7bf0857
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
id oai:doaj.org-article:a09dea75f9f64b2fb9d607e6e7bf0857
record_format dspace
spelling oai:doaj.org-article:a09dea75f9f64b2fb9d607e6e7bf08572021-12-02T16:06:20ZAutomated Training of Deep Convolutional Neural Networks for Cell Segmentation10.1038/s41598-017-07599-62045-2322https://doaj.org/article/a09dea75f9f64b2fb9d607e6e7bf08572017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07599-6https://doaj.org/toc/2045-2322Abstract Deep Convolutional Neural Networks (DCNN) have recently emerged as superior for many image segmentation tasks. The DCNN performance is however heavily dependent on the availability of large amounts of problem-specific training samples. Here we show that DCNNs trained on ground truth created automatically using fluorescently labeled cells, perform similar to manual annotations.Sajith Kecheril SadanandanPetter RanefallSylvie Le GuyaderCarolina WählbyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-7 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Sajith Kecheril Sadanandan
Petter Ranefall
Sylvie Le Guyader
Carolina Wählby
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
description Abstract Deep Convolutional Neural Networks (DCNN) have recently emerged as superior for many image segmentation tasks. The DCNN performance is however heavily dependent on the availability of large amounts of problem-specific training samples. Here we show that DCNNs trained on ground truth created automatically using fluorescently labeled cells, perform similar to manual annotations.
format article
author Sajith Kecheril Sadanandan
Petter Ranefall
Sylvie Le Guyader
Carolina Wählby
author_facet Sajith Kecheril Sadanandan
Petter Ranefall
Sylvie Le Guyader
Carolina Wählby
author_sort Sajith Kecheril Sadanandan
title Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
title_short Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
title_full Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
title_fullStr Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
title_full_unstemmed Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
title_sort automated training of deep convolutional neural networks for cell segmentation
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/a09dea75f9f64b2fb9d607e6e7bf0857
work_keys_str_mv AT sajithkecherilsadanandan automatedtrainingofdeepconvolutionalneuralnetworksforcellsegmentation
AT petterranefall automatedtrainingofdeepconvolutionalneuralnetworksforcellsegmentation
AT sylvieleguyader automatedtrainingofdeepconvolutionalneuralnetworksforcellsegmentation
AT carolinawahlby automatedtrainingofdeepconvolutionalneuralnetworksforcellsegmentation
_version_ 1718385042785304576