Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
Abstract Deep Convolutional Neural Networks (DCNN) have recently emerged as superior for many image segmentation tasks. The DCNN performance is however heavily dependent on the availability of large amounts of problem-specific training samples. Here we show that DCNNs trained on ground truth created...
Enregistré dans:
Auteurs principaux: | Sajith Kecheril Sadanandan, Petter Ranefall, Sylvie Le Guyader, Carolina Wählby |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a09dea75f9f64b2fb9d607e6e7bf0857 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Fully automatic wound segmentation with deep convolutional neural networks
par: Chuanbo Wang, et autres
Publié: (2020) -
Deep Hybrid Convolutional Neural Network for Segmentation of Melanoma Skin Lesion
par: Cheng-Hong Yang, et autres
Publié: (2021) -
Multi-view convolutional neural networks for automated ocular structure and tumor segmentation in retinoblastoma
par: Victor I. J. Strijbis, et autres
Publié: (2021) -
Crack recognition automation in concrete bridges using Deep Convolutional Neural Networks
par: Zoubir Hajar, et autres
Publié: (2021) -
Automated abnormality classification of chest radiographs using deep convolutional neural networks
par: Yu-Xing Tang, et autres
Publié: (2020)