A novel lncRNA–protein interaction prediction method based on deep forest with cascade forest structure
Abstract Long noncoding RNAs (lncRNAs) regulate many biological processes by interacting with corresponding RNA-binding proteins. The identification of lncRNA–protein Interactions (LPIs) is significantly important to well characterize the biological functions and mechanisms of lncRNAs. Existing comp...
Guardado en:
Autores principales: | Xiongfei Tian, Ling Shen, Zhenwu Wang, Liqian Zhou, Lihong Peng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a0acb30f0ee4466cabc1620b344531dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
LPI-HyADBS: a hybrid framework for lncRNA-protein interaction prediction integrating feature selection and classification
por: Liqian Zhou, et al.
Publicado: (2021) -
LPI-EnEDT: an ensemble framework with extra tree and decision tree classifiers for imbalanced lncRNA-protein interaction data classification
por: Lihong Peng, et al.
Publicado: (2021) -
The LncRNA Connectivity Map: Using LncRNA Signatures to Connect Small Molecules, LncRNAs, and Diseases
por: Haixiu Yang, et al.
Publicado: (2017) -
LGFC-CNN: Prediction of lncRNA-Protein Interactions by Using Multiple Types of Features through Deep Learning
por: Lan Huang, et al.
Publicado: (2021) -
Comprehensive analysis of lncRNA biomarkers in kidney renal clear cell carcinoma by lncRNA-mediated ceRNA network.
por: Ke Gong, et al.
Publicado: (2021)