Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations.
Colorectal cancer (CRC) is one of the most common types of cancer with a high mortality rate. Colonoscopy is the preferred procedure for CRC screening and has proven to be effective in reducing CRC mortality. Thus, a reliable computer-aided polyp detection and classification system can significantly...
Guardado en:
Autores principales: | Kaidong Li, Mohammad I Fathan, Krushi Patel, Tianxiao Zhang, Cuncong Zhong, Ajay Bansal, Amit Rastogi, Jean S Wang, Guanghui Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a0c845ef9b8649239febc5da999b0654 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
AI-doscopist: a real-time deep-learning-based algorithm for localising polyps in colonoscopy videos with edge computing devices
por: Carmen C. Y. Poon, et al.
Publicado: (2020) -
Factors associated with adenoma detection rate and diagnosis of polyps and colorectal cancer during colonoscopy in France: results of a prospective, nationwide survey.
por: Maximilien Barret, et al.
Publicado: (2013) -
CRF-EfficientUNet: An Improved UNet Framework for Polyp Segmentation in Colonoscopy Images With Combined Asymmetric Loss Function and CRF-RNN Layer
por: Le Thi Thu Hong, et al.
Publicado: (2021) -
Computational learning of features for automated colonic polyp classification
por: Kangkana Bora, et al.
Publicado: (2021) -
Quality Metrics and Indicators in Colonoscopy
por: Halim Bou Daher, et al.
Publicado: (2018)