A Hybrid Finite Element—Machine Learning Backward Training Approach to Analyze the Optimal Machining Conditions
As machining processes are complex in nature due to the involvement of large plastic strains occurring at higher strain rates, and simultaneous thermal softening of material, it is necessary for manufacturers to have some manner of determining whether the inputs will achieve the desired outputs with...
Guardado en:
Autores principales: | Kriz George, Sathish Kannan, Ali Raza, Salman Pervaiz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a0cb98c7f64d4f539d5174fcf00d024b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Designation Degree of Tool Wear after Machining of the Surface Layer of Duplex Stainless Steel
por: Tomasz Dyl
Publicado: (2021) -
Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
por: Yue Xu, et al.
Publicado: (2021) -
Prediction of Mechanical Properties of Artificially Weathered Wood by Color Change and Machine Learning
por: Vahid Nasir, et al.
Publicado: (2021) -
A Comparative Analysis on Prediction Performance of Regression Models during Machining of Composite Materials
por: Shibaprasad Bhattacharya, et al.
Publicado: (2021) -
Development of Machine Learning Models to Evaluate the Toughness of OPH Alloys
por: Omid Khalaj, et al.
Publicado: (2021)