A Hybrid Finite Element—Machine Learning Backward Training Approach to Analyze the Optimal Machining Conditions
As machining processes are complex in nature due to the involvement of large plastic strains occurring at higher strain rates, and simultaneous thermal softening of material, it is necessary for manufacturers to have some manner of determining whether the inputs will achieve the desired outputs with...
Enregistré dans:
Auteurs principaux: | Kriz George, Sathish Kannan, Ali Raza, Salman Pervaiz |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a0cb98c7f64d4f539d5174fcf00d024b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The Designation Degree of Tool Wear after Machining of the Surface Layer of Duplex Stainless Steel
par: Tomasz Dyl
Publié: (2021) -
Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
par: Yue Xu, et autres
Publié: (2021) -
Prediction of Mechanical Properties of Artificially Weathered Wood by Color Change and Machine Learning
par: Vahid Nasir, et autres
Publié: (2021) -
A Comparative Analysis on Prediction Performance of Regression Models during Machining of Composite Materials
par: Shibaprasad Bhattacharya, et autres
Publié: (2021) -
Development of Machine Learning Models to Evaluate the Toughness of OPH Alloys
par: Omid Khalaj, et autres
Publié: (2021)