ADRML: anticancer drug response prediction using manifold learning
Abstract One of the prominent challenges in precision medicine is to select the most appropriate treatment strategy for each patient based on the personalized information. The availability of massive data about drugs and cell lines facilitates the possibility of proposing efficient computational mod...
Guardado en:
Autores principales: | Fatemeh Ahmadi Moughari, Changiz Eslahchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a0d5555dffc8446b9e2b7f8c9c55b7fd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: ADRML: anticancer drug response prediction using manifold learning
por: Fatemeh Ahmadi Moughari, et al.
Publicado: (2020) -
Using manifold learning for atlas selection in multi-atlas segmentation.
por: Albert K Hoang Duc, et al.
Publicado: (2013) -
An order independent algorithm for inferring gene regulatory network using quantile value for conditional independence tests
por: Sayyed Hadi Mahmoodi, et al.
Publicado: (2021) -
Network dynamics-based cancer panel stratification for systemic prediction of anticancer drug response
por: Minsoo Choi, et al.
Publicado: (2017) -
In silico studies reveal structural deviations of mutant profilin-1 and interaction with riluzole and edaravone in amyotrophic lateral sclerosis
por: Ahmad Shahir Sadr, et al.
Publicado: (2021)