Influence of a double vortex chamber on temperature reduction in a counter-flow vortex tube
This article reports the effect of double vortex-chambers with multiple inlet snail entries of N = 1, 4 and 6 nozzles on the energy separation referred to cold gas exit temperature difference (ΔTc) in a counter-flow vortex tube type. The experimental work focused on ascertaining the effects of entry...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a0e4ab7107dd46d5aff84d4e95681162 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a0e4ab7107dd46d5aff84d4e95681162 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a0e4ab7107dd46d5aff84d4e956811622021-11-28T04:32:22ZInfluence of a double vortex chamber on temperature reduction in a counter-flow vortex tube2214-157X10.1016/j.csite.2021.101662https://doaj.org/article/a0e4ab7107dd46d5aff84d4e956811622021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2214157X2100825Xhttps://doaj.org/toc/2214-157XThis article reports the effect of double vortex-chambers with multiple inlet snail entries of N = 1, 4 and 6 nozzles on the energy separation referred to cold gas exit temperature difference (ΔTc) in a counter-flow vortex tube type. The experimental work focused on ascertaining the effects of entry air pressure (Pi = 2, 3 and 4 bar), distance ratios between the two vortex-chamber to the vortex tube diameter (l/D = 0.875–1.125) and the cold gas mass ratio (μc) in a vortex tube. It was found that cold gas exit temperature difference (ΔTc) increased with increasing inlet air pressure (Pi) and number of inlet nozzles (N), and decreasing l/D. Among the studied conditions, the double vortex-chamber operated at the highest Pi of 4 bar, N = 6, the smallest l/D = 0.875 and μc = 0.38 gave the highest cold gas exit temperature difference (ΔTc) of 31.5 °C. In addition, the deep learning optimization technique was also developed to predict the temperatures for different combination of parameters used in this study. It was found that the optimal models provide maximum R2 value of 0.99317.P. SamruaisinV. ChuwattanakulM. PimsarnP. PromthaisongA. SaysroyS. ChokphoemphunM. KumarS. Eiamsa-ardElsevierarticleCounter-flow vortex tube typeCold gas exit temperature difference (ΔTc)Double vortex-chambersRanque-hilsch vortex tube (RHVT)Deep learningEngineering (General). Civil engineering (General)TA1-2040ENCase Studies in Thermal Engineering, Vol 28, Iss , Pp 101662- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Counter-flow vortex tube type Cold gas exit temperature difference (ΔTc) Double vortex-chambers Ranque-hilsch vortex tube (RHVT) Deep learning Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
Counter-flow vortex tube type Cold gas exit temperature difference (ΔTc) Double vortex-chambers Ranque-hilsch vortex tube (RHVT) Deep learning Engineering (General). Civil engineering (General) TA1-2040 P. Samruaisin V. Chuwattanakul M. Pimsarn P. Promthaisong A. Saysroy S. Chokphoemphun M. Kumar S. Eiamsa-ard Influence of a double vortex chamber on temperature reduction in a counter-flow vortex tube |
description |
This article reports the effect of double vortex-chambers with multiple inlet snail entries of N = 1, 4 and 6 nozzles on the energy separation referred to cold gas exit temperature difference (ΔTc) in a counter-flow vortex tube type. The experimental work focused on ascertaining the effects of entry air pressure (Pi = 2, 3 and 4 bar), distance ratios between the two vortex-chamber to the vortex tube diameter (l/D = 0.875–1.125) and the cold gas mass ratio (μc) in a vortex tube. It was found that cold gas exit temperature difference (ΔTc) increased with increasing inlet air pressure (Pi) and number of inlet nozzles (N), and decreasing l/D. Among the studied conditions, the double vortex-chamber operated at the highest Pi of 4 bar, N = 6, the smallest l/D = 0.875 and μc = 0.38 gave the highest cold gas exit temperature difference (ΔTc) of 31.5 °C. In addition, the deep learning optimization technique was also developed to predict the temperatures for different combination of parameters used in this study. It was found that the optimal models provide maximum R2 value of 0.99317. |
format |
article |
author |
P. Samruaisin V. Chuwattanakul M. Pimsarn P. Promthaisong A. Saysroy S. Chokphoemphun M. Kumar S. Eiamsa-ard |
author_facet |
P. Samruaisin V. Chuwattanakul M. Pimsarn P. Promthaisong A. Saysroy S. Chokphoemphun M. Kumar S. Eiamsa-ard |
author_sort |
P. Samruaisin |
title |
Influence of a double vortex chamber on temperature reduction in a counter-flow vortex tube |
title_short |
Influence of a double vortex chamber on temperature reduction in a counter-flow vortex tube |
title_full |
Influence of a double vortex chamber on temperature reduction in a counter-flow vortex tube |
title_fullStr |
Influence of a double vortex chamber on temperature reduction in a counter-flow vortex tube |
title_full_unstemmed |
Influence of a double vortex chamber on temperature reduction in a counter-flow vortex tube |
title_sort |
influence of a double vortex chamber on temperature reduction in a counter-flow vortex tube |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/a0e4ab7107dd46d5aff84d4e95681162 |
work_keys_str_mv |
AT psamruaisin influenceofadoublevortexchamberontemperaturereductioninacounterflowvortextube AT vchuwattanakul influenceofadoublevortexchamberontemperaturereductioninacounterflowvortextube AT mpimsarn influenceofadoublevortexchamberontemperaturereductioninacounterflowvortextube AT ppromthaisong influenceofadoublevortexchamberontemperaturereductioninacounterflowvortextube AT asaysroy influenceofadoublevortexchamberontemperaturereductioninacounterflowvortextube AT schokphoemphun influenceofadoublevortexchamberontemperaturereductioninacounterflowvortextube AT mkumar influenceofadoublevortexchamberontemperaturereductioninacounterflowvortextube AT seiamsaard influenceofadoublevortexchamberontemperaturereductioninacounterflowvortextube |
_version_ |
1718408334932967424 |