Combining Nyström Methods for a Fast Solution of Fredholm Integral Equations of the Second Kind

In this paper, we propose a suitable combination of two different Nyström methods, both using the zeros of the same sequence of Jacobi polynomials, in order to approximate the solution of Fredholm integral equations on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&quo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Domenico Mezzanotte, Donatella Occorsio, Maria Grazia Russo
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/a0e58cc1d0ab4268854583e635739de8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we propose a suitable combination of two different Nyström methods, both using the zeros of the same sequence of Jacobi polynomials, in order to approximate the solution of Fredholm integral equations on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>. The proposed procedure is cheaper than the Nyström scheme based on using only one of the described methods . Moreover, we can successfully manage functions with possible algebraic singularities at the endpoints and kernels with different pathologies. The error of the method is comparable with that of the best polynomial approximation in suitable spaces of functions, equipped with the weighted uniform norm. The convergence and the stability of the method are proved, and some numerical tests that confirm the theoretical estimates are given.