Iterative reconstruction of high-dimensional Gaussian Graphical Models based on a new method to estimate partial correlations under constraints.
In the context of Gaussian Graphical Models (GGMs) with high-dimensional small sample data, we present a simple procedure, called PACOSE - standing for PArtial COrrelation SElection - to estimate partial correlations under the constraint that some of them are strictly zero. This method can also be e...
Guardado en:
Autores principales: | Vincent Guillemot, Andreas Bender, Anne-Laure Boulesteix |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a0eb6a87f8a6470f890a0844907b465d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gaussian graphical modeling of the serum exposome and metabolome reveals interactions between environmental chemicals and endogenous metabolites
por: Vincent Bessonneau, et al.
Publicado: (2021) -
Iterative quantum amplitude estimation
por: Dmitry Grinko, et al.
Publicado: (2021) -
Generation of Two Correlated Stationary Gaussian Processes
por: Guo-Qiang Cai, et al.
Publicado: (2021) -
Three-Dimensional Reconstruction of Abdominal Aortic Aneurysm Based on Compressive Sensing With Iterative Optimization and Its Application in 3D Printing
por: Xiaogang Ren, et al.
Publicado: (2019) -
Tilted grating phase-contrast computed tomography using statistical iterative reconstruction
por: Lorenz Birnbacher, et al.
Publicado: (2018)