Investigation of thermo-mechanical behavior, proton transfer and methanol permeation of polymer electrolyte membrane in low sulfonated state modified with thermally stable surface functionalized graphene oxide nanosheets
Sulfonated polyether ether ketone is currently under investigation to replace the expensive Nafion® as polymer electrolyte membrane. Sulfonic acid group is hydrophilic in nature and plays a key role in proton transfer in polymer electrolyte membranes. The higher the degree of sulfonation the higher...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a0f383b44ea74c55b401f2d979c80214 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a0f383b44ea74c55b401f2d979c80214 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a0f383b44ea74c55b401f2d979c802142021-11-24T04:24:43ZInvestigation of thermo-mechanical behavior, proton transfer and methanol permeation of polymer electrolyte membrane in low sulfonated state modified with thermally stable surface functionalized graphene oxide nanosheets0142-941810.1016/j.polymertesting.2020.106941https://doaj.org/article/a0f383b44ea74c55b401f2d979c802142021-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S014294182032170Xhttps://doaj.org/toc/0142-9418Sulfonated polyether ether ketone is currently under investigation to replace the expensive Nafion® as polymer electrolyte membrane. Sulfonic acid group is hydrophilic in nature and plays a key role in proton transfer in polymer electrolyte membranes. The higher the degree of sulfonation the higher proton conductivity in sPEEK based polymer exchange membrane is achieved; however, high degree of sulfonation causes severe dimensional instability due to higher water uptake which in turn affects membrane fuel retention capabilities as well as thermo-mechanical strength. Graphene oxide nanosheets were functionalized with aryl dizonium salt of p-Aminobenzene sulfonic acid for modification of sPEEK in low sulfonated state (DS = 53%) to improve its proton conductivity and suppress fuel crossover. The functionalization was carried out to compensate for the possible dilution of proton exchangeable sites by fillers. The resulting membranes were characterized in terms of morphology, thermo-mechanical behavior, methanol permeability, water uptake, and proton conductivities. The results proved that sulfonated GO not only improved thermo-mechanical behavior of the membrane but also dramatically increased proton conductivity (47 mS cm−1) than pristine sPEEK (25 mS cm−1). The composite membranes showed highly reduced methanol crossover compared with pristine sPEEK. The electrochemical selectivity increased from 9.5 × 104 Scm−3s (pristine sPEEK) to 26.9 × 104 Scm−3s.Sher AyazHai-Yin YuElsevierarticleFunctionalized graphene oxideSulfonated polyether ether ketoneProton conductivityMethanol permeationPolymer electrolyte membranePolymers and polymer manufactureTP1080-1185ENPolymer Testing, Vol 93, Iss , Pp 106941- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Functionalized graphene oxide Sulfonated polyether ether ketone Proton conductivity Methanol permeation Polymer electrolyte membrane Polymers and polymer manufacture TP1080-1185 |
spellingShingle |
Functionalized graphene oxide Sulfonated polyether ether ketone Proton conductivity Methanol permeation Polymer electrolyte membrane Polymers and polymer manufacture TP1080-1185 Sher Ayaz Hai-Yin Yu Investigation of thermo-mechanical behavior, proton transfer and methanol permeation of polymer electrolyte membrane in low sulfonated state modified with thermally stable surface functionalized graphene oxide nanosheets |
description |
Sulfonated polyether ether ketone is currently under investigation to replace the expensive Nafion® as polymer electrolyte membrane. Sulfonic acid group is hydrophilic in nature and plays a key role in proton transfer in polymer electrolyte membranes. The higher the degree of sulfonation the higher proton conductivity in sPEEK based polymer exchange membrane is achieved; however, high degree of sulfonation causes severe dimensional instability due to higher water uptake which in turn affects membrane fuel retention capabilities as well as thermo-mechanical strength. Graphene oxide nanosheets were functionalized with aryl dizonium salt of p-Aminobenzene sulfonic acid for modification of sPEEK in low sulfonated state (DS = 53%) to improve its proton conductivity and suppress fuel crossover. The functionalization was carried out to compensate for the possible dilution of proton exchangeable sites by fillers. The resulting membranes were characterized in terms of morphology, thermo-mechanical behavior, methanol permeability, water uptake, and proton conductivities. The results proved that sulfonated GO not only improved thermo-mechanical behavior of the membrane but also dramatically increased proton conductivity (47 mS cm−1) than pristine sPEEK (25 mS cm−1). The composite membranes showed highly reduced methanol crossover compared with pristine sPEEK. The electrochemical selectivity increased from 9.5 × 104 Scm−3s (pristine sPEEK) to 26.9 × 104 Scm−3s. |
format |
article |
author |
Sher Ayaz Hai-Yin Yu |
author_facet |
Sher Ayaz Hai-Yin Yu |
author_sort |
Sher Ayaz |
title |
Investigation of thermo-mechanical behavior, proton transfer and methanol permeation of polymer electrolyte membrane in low sulfonated state modified with thermally stable surface functionalized graphene oxide nanosheets |
title_short |
Investigation of thermo-mechanical behavior, proton transfer and methanol permeation of polymer electrolyte membrane in low sulfonated state modified with thermally stable surface functionalized graphene oxide nanosheets |
title_full |
Investigation of thermo-mechanical behavior, proton transfer and methanol permeation of polymer electrolyte membrane in low sulfonated state modified with thermally stable surface functionalized graphene oxide nanosheets |
title_fullStr |
Investigation of thermo-mechanical behavior, proton transfer and methanol permeation of polymer electrolyte membrane in low sulfonated state modified with thermally stable surface functionalized graphene oxide nanosheets |
title_full_unstemmed |
Investigation of thermo-mechanical behavior, proton transfer and methanol permeation of polymer electrolyte membrane in low sulfonated state modified with thermally stable surface functionalized graphene oxide nanosheets |
title_sort |
investigation of thermo-mechanical behavior, proton transfer and methanol permeation of polymer electrolyte membrane in low sulfonated state modified with thermally stable surface functionalized graphene oxide nanosheets |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/a0f383b44ea74c55b401f2d979c80214 |
work_keys_str_mv |
AT sherayaz investigationofthermomechanicalbehaviorprotontransferandmethanolpermeationofpolymerelectrolytemembraneinlowsulfonatedstatemodifiedwiththermallystablesurfacefunctionalizedgrapheneoxidenanosheets AT haiyinyu investigationofthermomechanicalbehaviorprotontransferandmethanolpermeationofpolymerelectrolytemembraneinlowsulfonatedstatemodifiedwiththermallystablesurfacefunctionalizedgrapheneoxidenanosheets |
_version_ |
1718416051617660928 |