Multi-segment fuzzy control for start-up optimizing of LCC-based high-voltage power supply
Widely applied in medical, industrial, and military fields, the high-voltage power supply based on LCC resonant converter (LCC) is ought to establish tens kilovolts of output voltage within milliseconds according to many standards. And any overshoot during this start-up process is not allowed becaus...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a116ea8016594305ab6ee68ff428e93c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a116ea8016594305ab6ee68ff428e93c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a116ea8016594305ab6ee68ff428e93c2021-12-04T04:35:11ZMulti-segment fuzzy control for start-up optimizing of LCC-based high-voltage power supply2352-484710.1016/j.egyr.2021.11.166https://doaj.org/article/a116ea8016594305ab6ee68ff428e93c2022-04-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2352484721013135https://doaj.org/toc/2352-4847Widely applied in medical, industrial, and military fields, the high-voltage power supply based on LCC resonant converter (LCC) is ought to establish tens kilovolts of output voltage within milliseconds according to many standards. And any overshoot during this start-up process is not allowed because of the issue or even deadly consequence it may lead. Traditional linear control schemes are powerless to fulfill these two conflicting requirements, especially for the LCC with nonlinear gain characteristics. In this paper, a multi-segment fuzzy control is proposed to tackle this problem. Firstly, the nonlinear gain curve of LCC is piecewise linearized based on its large-signal model, and the control requirements for different segments are determined. Then the control parameters for each part are selected by an off-line fuzzy algorithm. The allowed minimum frequency during the start-up is also piecewise linearized so that the gain ability of LCC is utilized. Finally, the proposed control scheme is verified with an 80kW/150kV X-ray power supply. A low-cost controller is used to implement the start-up control scheme since the control parameters can be pre-calculated and stored in the controller. Compared with the commonly used linear PI control, the non-overshoot start-up time with the proposed control scheme is reduced by more than 60%.Jun ZhaoLianghao LiZhenyu LiZheng ChenLong XiaoGuozhu ChenElsevierarticleLCC resonant converterHigh-voltage power supplyOptimized start-upFuzzy algorithmMulti-segmentElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENEnergy Reports, Vol 8, Iss , Pp 552-559 (2022) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
LCC resonant converter High-voltage power supply Optimized start-up Fuzzy algorithm Multi-segment Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
LCC resonant converter High-voltage power supply Optimized start-up Fuzzy algorithm Multi-segment Electrical engineering. Electronics. Nuclear engineering TK1-9971 Jun Zhao Lianghao Li Zhenyu Li Zheng Chen Long Xiao Guozhu Chen Multi-segment fuzzy control for start-up optimizing of LCC-based high-voltage power supply |
description |
Widely applied in medical, industrial, and military fields, the high-voltage power supply based on LCC resonant converter (LCC) is ought to establish tens kilovolts of output voltage within milliseconds according to many standards. And any overshoot during this start-up process is not allowed because of the issue or even deadly consequence it may lead. Traditional linear control schemes are powerless to fulfill these two conflicting requirements, especially for the LCC with nonlinear gain characteristics. In this paper, a multi-segment fuzzy control is proposed to tackle this problem. Firstly, the nonlinear gain curve of LCC is piecewise linearized based on its large-signal model, and the control requirements for different segments are determined. Then the control parameters for each part are selected by an off-line fuzzy algorithm. The allowed minimum frequency during the start-up is also piecewise linearized so that the gain ability of LCC is utilized. Finally, the proposed control scheme is verified with an 80kW/150kV X-ray power supply. A low-cost controller is used to implement the start-up control scheme since the control parameters can be pre-calculated and stored in the controller. Compared with the commonly used linear PI control, the non-overshoot start-up time with the proposed control scheme is reduced by more than 60%. |
format |
article |
author |
Jun Zhao Lianghao Li Zhenyu Li Zheng Chen Long Xiao Guozhu Chen |
author_facet |
Jun Zhao Lianghao Li Zhenyu Li Zheng Chen Long Xiao Guozhu Chen |
author_sort |
Jun Zhao |
title |
Multi-segment fuzzy control for start-up optimizing of LCC-based high-voltage power supply |
title_short |
Multi-segment fuzzy control for start-up optimizing of LCC-based high-voltage power supply |
title_full |
Multi-segment fuzzy control for start-up optimizing of LCC-based high-voltage power supply |
title_fullStr |
Multi-segment fuzzy control for start-up optimizing of LCC-based high-voltage power supply |
title_full_unstemmed |
Multi-segment fuzzy control for start-up optimizing of LCC-based high-voltage power supply |
title_sort |
multi-segment fuzzy control for start-up optimizing of lcc-based high-voltage power supply |
publisher |
Elsevier |
publishDate |
2022 |
url |
https://doaj.org/article/a116ea8016594305ab6ee68ff428e93c |
work_keys_str_mv |
AT junzhao multisegmentfuzzycontrolforstartupoptimizingoflccbasedhighvoltagepowersupply AT lianghaoli multisegmentfuzzycontrolforstartupoptimizingoflccbasedhighvoltagepowersupply AT zhenyuli multisegmentfuzzycontrolforstartupoptimizingoflccbasedhighvoltagepowersupply AT zhengchen multisegmentfuzzycontrolforstartupoptimizingoflccbasedhighvoltagepowersupply AT longxiao multisegmentfuzzycontrolforstartupoptimizingoflccbasedhighvoltagepowersupply AT guozhuchen multisegmentfuzzycontrolforstartupoptimizingoflccbasedhighvoltagepowersupply |
_version_ |
1718372931737747456 |