Comparative study on nanofiber containing polypropylene-based composite mesh for abdominal wall hernia repair
Electrospun nanofibrous membranes (NFM) can serve as a physical barrier, employed to confer polypropylene (PP) mesh with anti-adhesion capability for repairing abdominal wall hernias. Still, the feasibility of NFM combined with different PP meshes was poorly researched. In this study, nanofiber cont...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a1188b420ae644fbbc870430635ecec3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a1188b420ae644fbbc870430635ecec3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a1188b420ae644fbbc870430635ecec32021-11-14T04:28:32ZComparative study on nanofiber containing polypropylene-based composite mesh for abdominal wall hernia repair0264-127510.1016/j.matdes.2021.110227https://doaj.org/article/a1188b420ae644fbbc870430635ecec32021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0264127521007826https://doaj.org/toc/0264-1275Electrospun nanofibrous membranes (NFM) can serve as a physical barrier, employed to confer polypropylene (PP) mesh with anti-adhesion capability for repairing abdominal wall hernias. Still, the feasibility of NFM combined with different PP meshes was poorly researched. In this study, nanofiber containing composite meshes with three PP substrates were produced by integrating the NFM barrier compositing poly (lactic-co-glycolic acid) and polycaprolactone (PLGA/PCL) into each PP mesh. Tensile mechanical test results revealed that the PP component played a dominant role in the mechanical support, and this structure has not deteriorated in any case during the process. In vitro cell studies showed that the PP mesh with a higher density was significantly beneficial for cell proliferation within 3 days of seeding, while the one with lower density exhibited notable cell proliferation after a culture of 5 days. All the meshes had excellent biocompatibility. Moreover, an intraperitoneal implantation rabbit model was used to assess the anti-adhesion effects and tissue compatibility. The results revealed that the NFM barrier could be incorporated into the lightweight PP mesh to yield the composite mesh with superior anti-adhesion property and tissue compatibility.Ying MaoYunxiao MengShaojie LiYan LiRobert GuidoinYansha QiaoZe ZhangGaetan BrochuJianxiong TangLu WangElsevierarticleAbdominal wall herniaPolypropyleneNanofibrous barrierComposite meshAnti-adhesionMaterials of engineering and construction. Mechanics of materialsTA401-492ENMaterials & Design, Vol 212, Iss , Pp 110227- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Abdominal wall hernia Polypropylene Nanofibrous barrier Composite mesh Anti-adhesion Materials of engineering and construction. Mechanics of materials TA401-492 |
spellingShingle |
Abdominal wall hernia Polypropylene Nanofibrous barrier Composite mesh Anti-adhesion Materials of engineering and construction. Mechanics of materials TA401-492 Ying Mao Yunxiao Meng Shaojie Li Yan Li Robert Guidoin Yansha Qiao Ze Zhang Gaetan Brochu Jianxiong Tang Lu Wang Comparative study on nanofiber containing polypropylene-based composite mesh for abdominal wall hernia repair |
description |
Electrospun nanofibrous membranes (NFM) can serve as a physical barrier, employed to confer polypropylene (PP) mesh with anti-adhesion capability for repairing abdominal wall hernias. Still, the feasibility of NFM combined with different PP meshes was poorly researched. In this study, nanofiber containing composite meshes with three PP substrates were produced by integrating the NFM barrier compositing poly (lactic-co-glycolic acid) and polycaprolactone (PLGA/PCL) into each PP mesh. Tensile mechanical test results revealed that the PP component played a dominant role in the mechanical support, and this structure has not deteriorated in any case during the process. In vitro cell studies showed that the PP mesh with a higher density was significantly beneficial for cell proliferation within 3 days of seeding, while the one with lower density exhibited notable cell proliferation after a culture of 5 days. All the meshes had excellent biocompatibility. Moreover, an intraperitoneal implantation rabbit model was used to assess the anti-adhesion effects and tissue compatibility. The results revealed that the NFM barrier could be incorporated into the lightweight PP mesh to yield the composite mesh with superior anti-adhesion property and tissue compatibility. |
format |
article |
author |
Ying Mao Yunxiao Meng Shaojie Li Yan Li Robert Guidoin Yansha Qiao Ze Zhang Gaetan Brochu Jianxiong Tang Lu Wang |
author_facet |
Ying Mao Yunxiao Meng Shaojie Li Yan Li Robert Guidoin Yansha Qiao Ze Zhang Gaetan Brochu Jianxiong Tang Lu Wang |
author_sort |
Ying Mao |
title |
Comparative study on nanofiber containing polypropylene-based composite mesh for abdominal wall hernia repair |
title_short |
Comparative study on nanofiber containing polypropylene-based composite mesh for abdominal wall hernia repair |
title_full |
Comparative study on nanofiber containing polypropylene-based composite mesh for abdominal wall hernia repair |
title_fullStr |
Comparative study on nanofiber containing polypropylene-based composite mesh for abdominal wall hernia repair |
title_full_unstemmed |
Comparative study on nanofiber containing polypropylene-based composite mesh for abdominal wall hernia repair |
title_sort |
comparative study on nanofiber containing polypropylene-based composite mesh for abdominal wall hernia repair |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/a1188b420ae644fbbc870430635ecec3 |
work_keys_str_mv |
AT yingmao comparativestudyonnanofibercontainingpolypropylenebasedcompositemeshforabdominalwallherniarepair AT yunxiaomeng comparativestudyonnanofibercontainingpolypropylenebasedcompositemeshforabdominalwallherniarepair AT shaojieli comparativestudyonnanofibercontainingpolypropylenebasedcompositemeshforabdominalwallherniarepair AT yanli comparativestudyonnanofibercontainingpolypropylenebasedcompositemeshforabdominalwallherniarepair AT robertguidoin comparativestudyonnanofibercontainingpolypropylenebasedcompositemeshforabdominalwallherniarepair AT yanshaqiao comparativestudyonnanofibercontainingpolypropylenebasedcompositemeshforabdominalwallherniarepair AT zezhang comparativestudyonnanofibercontainingpolypropylenebasedcompositemeshforabdominalwallherniarepair AT gaetanbrochu comparativestudyonnanofibercontainingpolypropylenebasedcompositemeshforabdominalwallherniarepair AT jianxiongtang comparativestudyonnanofibercontainingpolypropylenebasedcompositemeshforabdominalwallherniarepair AT luwang comparativestudyonnanofibercontainingpolypropylenebasedcompositemeshforabdominalwallherniarepair |
_version_ |
1718430032828825600 |