Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption
Autosomal dominant optic atrophy (ADOA) is frequently caused by mutations in the optic atrophy 1 (OPA1) gene, with haploinsufficiency being the major genetic pathomechanism. Almost 30% of the OPA1-associated cases suffer from splice defects. We identified a novel OPA1 mutation, c.1065+5G>A, in pa...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a11ea567c94342c38da3cd307ffe83ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a11ea567c94342c38da3cd307ffe83ad |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a11ea567c94342c38da3cd307ffe83ad2021-11-18T04:47:43ZAutosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption2162-253110.1016/j.omtn.2021.10.019https://doaj.org/article/a11ea567c94342c38da3cd307ffe83ad2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2162253121002626https://doaj.org/toc/2162-2531Autosomal dominant optic atrophy (ADOA) is frequently caused by mutations in the optic atrophy 1 (OPA1) gene, with haploinsufficiency being the major genetic pathomechanism. Almost 30% of the OPA1-associated cases suffer from splice defects. We identified a novel OPA1 mutation, c.1065+5G>A, in patients with ADOA. In patient-derived fibroblasts, the mutation led to skipping of OPA1 exon 10, reducing the OPA1 protein expression by approximately 50%. We developed a molecular treatment to correct the splice defect in OPA1 using engineered U1 splice factors retargeted to different locations in OPA1 exon 10 or intron 10. The strongest therapeutic effect was detected when U1 binding was engineered to bind to intron 10 at position +18, a position predicted by bioinformatics to be a promising binding site. We were able to significantly silence the effect of the mutation (skipping of exon 10) and simultaneously increase the expression level of normal transcripts. Retargeting U1 to the canonical splice donor site did not lead to a detectable splice correction. This proof-of-concept study indicates for the first time the feasibility of splice mutation correction as a treatment option for ADOA. Increasing the amount of correctly spliced OPA1 transcripts may suffice to overcome the haploinsufficiency.Christoph JüschkeThomas KlopstockClaudia B. CatarinoMarta Owczarek-LipskaBernd WissingerJohn NeidhardtElsevierarticlegene therapyU1 snRNAExSpeU1splicingDominant Optic AtrophyDOATherapeutics. PharmacologyRM1-950ENMolecular Therapy: Nucleic Acids, Vol 26, Iss , Pp 1186-1197 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
gene therapy U1 snRNA ExSpeU1 splicing Dominant Optic Atrophy DOA Therapeutics. Pharmacology RM1-950 |
spellingShingle |
gene therapy U1 snRNA ExSpeU1 splicing Dominant Optic Atrophy DOA Therapeutics. Pharmacology RM1-950 Christoph Jüschke Thomas Klopstock Claudia B. Catarino Marta Owczarek-Lipska Bernd Wissinger John Neidhardt Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption |
description |
Autosomal dominant optic atrophy (ADOA) is frequently caused by mutations in the optic atrophy 1 (OPA1) gene, with haploinsufficiency being the major genetic pathomechanism. Almost 30% of the OPA1-associated cases suffer from splice defects. We identified a novel OPA1 mutation, c.1065+5G>A, in patients with ADOA. In patient-derived fibroblasts, the mutation led to skipping of OPA1 exon 10, reducing the OPA1 protein expression by approximately 50%. We developed a molecular treatment to correct the splice defect in OPA1 using engineered U1 splice factors retargeted to different locations in OPA1 exon 10 or intron 10. The strongest therapeutic effect was detected when U1 binding was engineered to bind to intron 10 at position +18, a position predicted by bioinformatics to be a promising binding site. We were able to significantly silence the effect of the mutation (skipping of exon 10) and simultaneously increase the expression level of normal transcripts. Retargeting U1 to the canonical splice donor site did not lead to a detectable splice correction. This proof-of-concept study indicates for the first time the feasibility of splice mutation correction as a treatment option for ADOA. Increasing the amount of correctly spliced OPA1 transcripts may suffice to overcome the haploinsufficiency. |
format |
article |
author |
Christoph Jüschke Thomas Klopstock Claudia B. Catarino Marta Owczarek-Lipska Bernd Wissinger John Neidhardt |
author_facet |
Christoph Jüschke Thomas Klopstock Claudia B. Catarino Marta Owczarek-Lipska Bernd Wissinger John Neidhardt |
author_sort |
Christoph Jüschke |
title |
Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption |
title_short |
Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption |
title_full |
Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption |
title_fullStr |
Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption |
title_full_unstemmed |
Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption |
title_sort |
autosomal dominant optic atrophy: a novel treatment for opa1 splice defects using u1 snrna adaption |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/a11ea567c94342c38da3cd307ffe83ad |
work_keys_str_mv |
AT christophjuschke autosomaldominantopticatrophyanoveltreatmentforopa1splicedefectsusingu1snrnaadaption AT thomasklopstock autosomaldominantopticatrophyanoveltreatmentforopa1splicedefectsusingu1snrnaadaption AT claudiabcatarino autosomaldominantopticatrophyanoveltreatmentforopa1splicedefectsusingu1snrnaadaption AT martaowczareklipska autosomaldominantopticatrophyanoveltreatmentforopa1splicedefectsusingu1snrnaadaption AT berndwissinger autosomaldominantopticatrophyanoveltreatmentforopa1splicedefectsusingu1snrnaadaption AT johnneidhardt autosomaldominantopticatrophyanoveltreatmentforopa1splicedefectsusingu1snrnaadaption |
_version_ |
1718425057558003712 |