Expand-and-Randomize: An Algebraic Approach to Secure Computation

We consider the secure computation problem in a minimal model, where Alice and Bob each holds an input and wish to securely compute a function of their inputs at Carol without revealing any additional information about the inputs. For this minimal secure computation problem, we propose a novel codin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yizhou Zhao, Hua Sun
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/a121a166e25c46cda4c0afd1ad5e897e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a121a166e25c46cda4c0afd1ad5e897e
record_format dspace
spelling oai:doaj.org-article:a121a166e25c46cda4c0afd1ad5e897e2021-11-25T17:29:50ZExpand-and-Randomize: An Algebraic Approach to Secure Computation10.3390/e231114611099-4300https://doaj.org/article/a121a166e25c46cda4c0afd1ad5e897e2021-11-01T00:00:00Zhttps://www.mdpi.com/1099-4300/23/11/1461https://doaj.org/toc/1099-4300We consider the secure computation problem in a minimal model, where Alice and Bob each holds an input and wish to securely compute a function of their inputs at Carol without revealing any additional information about the inputs. For this minimal secure computation problem, we propose a novel coding scheme built from two steps. First, the function to be computed is <i>expanded</i> such that it can be recovered while additional information might be leaked. Second, a <i>randomization</i> step is applied to the expanded function such that the leaked information is protected. We implement this expand-and-randomize coding scheme with two algebraic structures—the finite field and the modulo ring of integers, where the <i>expansion</i> step is realized with the <i>addition</i> operation and the <i>randomization</i> step is realized with the <i>multiplication</i> operation over the respective algebraic structures.Yizhou ZhaoHua SunMDPI AGarticlesecure computationcapacityalgebraic codesScienceQAstrophysicsQB460-466PhysicsQC1-999ENEntropy, Vol 23, Iss 1461, p 1461 (2021)
institution DOAJ
collection DOAJ
language EN
topic secure computation
capacity
algebraic codes
Science
Q
Astrophysics
QB460-466
Physics
QC1-999
spellingShingle secure computation
capacity
algebraic codes
Science
Q
Astrophysics
QB460-466
Physics
QC1-999
Yizhou Zhao
Hua Sun
Expand-and-Randomize: An Algebraic Approach to Secure Computation
description We consider the secure computation problem in a minimal model, where Alice and Bob each holds an input and wish to securely compute a function of their inputs at Carol without revealing any additional information about the inputs. For this minimal secure computation problem, we propose a novel coding scheme built from two steps. First, the function to be computed is <i>expanded</i> such that it can be recovered while additional information might be leaked. Second, a <i>randomization</i> step is applied to the expanded function such that the leaked information is protected. We implement this expand-and-randomize coding scheme with two algebraic structures—the finite field and the modulo ring of integers, where the <i>expansion</i> step is realized with the <i>addition</i> operation and the <i>randomization</i> step is realized with the <i>multiplication</i> operation over the respective algebraic structures.
format article
author Yizhou Zhao
Hua Sun
author_facet Yizhou Zhao
Hua Sun
author_sort Yizhou Zhao
title Expand-and-Randomize: An Algebraic Approach to Secure Computation
title_short Expand-and-Randomize: An Algebraic Approach to Secure Computation
title_full Expand-and-Randomize: An Algebraic Approach to Secure Computation
title_fullStr Expand-and-Randomize: An Algebraic Approach to Secure Computation
title_full_unstemmed Expand-and-Randomize: An Algebraic Approach to Secure Computation
title_sort expand-and-randomize: an algebraic approach to secure computation
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/a121a166e25c46cda4c0afd1ad5e897e
work_keys_str_mv AT yizhouzhao expandandrandomizeanalgebraicapproachtosecurecomputation
AT huasun expandandrandomizeanalgebraicapproachtosecurecomputation
_version_ 1718412302340849664