Graphene memristive synapses for high precision neuromorphic computing

Designing efficient and low power memristors-based neuromorphic systems remains a challenge. Here, the authors present graphene-based multi-level (>16) and non-volatile memristive synapses with arbitrarily programmable conductance states capable of weight assignment based on k-means clustering.

Guardado en:
Detalles Bibliográficos
Autores principales: Thomas F. Schranghamer, Aaryan Oberoi, Saptarshi Das
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/a130631a23e64efc851890dbc7347d88
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Designing efficient and low power memristors-based neuromorphic systems remains a challenge. Here, the authors present graphene-based multi-level (>16) and non-volatile memristive synapses with arbitrarily programmable conductance states capable of weight assignment based on k-means clustering.