Graphene memristive synapses for high precision neuromorphic computing
Designing efficient and low power memristors-based neuromorphic systems remains a challenge. Here, the authors present graphene-based multi-level (>16) and non-volatile memristive synapses with arbitrarily programmable conductance states capable of weight assignment based on k-means clustering.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a130631a23e64efc851890dbc7347d88 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a130631a23e64efc851890dbc7347d88 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a130631a23e64efc851890dbc7347d882021-12-02T16:49:15ZGraphene memristive synapses for high precision neuromorphic computing10.1038/s41467-020-19203-z2041-1723https://doaj.org/article/a130631a23e64efc851890dbc7347d882020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19203-zhttps://doaj.org/toc/2041-1723Designing efficient and low power memristors-based neuromorphic systems remains a challenge. Here, the authors present graphene-based multi-level (>16) and non-volatile memristive synapses with arbitrarily programmable conductance states capable of weight assignment based on k-means clustering.Thomas F. SchranghamerAaryan OberoiSaptarshi DasNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Thomas F. Schranghamer Aaryan Oberoi Saptarshi Das Graphene memristive synapses for high precision neuromorphic computing |
description |
Designing efficient and low power memristors-based neuromorphic systems remains a challenge. Here, the authors present graphene-based multi-level (>16) and non-volatile memristive synapses with arbitrarily programmable conductance states capable of weight assignment based on k-means clustering. |
format |
article |
author |
Thomas F. Schranghamer Aaryan Oberoi Saptarshi Das |
author_facet |
Thomas F. Schranghamer Aaryan Oberoi Saptarshi Das |
author_sort |
Thomas F. Schranghamer |
title |
Graphene memristive synapses for high precision neuromorphic computing |
title_short |
Graphene memristive synapses for high precision neuromorphic computing |
title_full |
Graphene memristive synapses for high precision neuromorphic computing |
title_fullStr |
Graphene memristive synapses for high precision neuromorphic computing |
title_full_unstemmed |
Graphene memristive synapses for high precision neuromorphic computing |
title_sort |
graphene memristive synapses for high precision neuromorphic computing |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/a130631a23e64efc851890dbc7347d88 |
work_keys_str_mv |
AT thomasfschranghamer graphenememristivesynapsesforhighprecisionneuromorphiccomputing AT aaryanoberoi graphenememristivesynapsesforhighprecisionneuromorphiccomputing AT saptarshidas graphenememristivesynapsesforhighprecisionneuromorphiccomputing |
_version_ |
1718383412812709888 |