Graphene memristive synapses for high precision neuromorphic computing

Designing efficient and low power memristors-based neuromorphic systems remains a challenge. Here, the authors present graphene-based multi-level (>16) and non-volatile memristive synapses with arbitrarily programmable conductance states capable of weight assignment based on k-means clustering.

Guardado en:
Detalles Bibliográficos
Autores principales: Thomas F. Schranghamer, Aaryan Oberoi, Saptarshi Das
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/a130631a23e64efc851890dbc7347d88
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a130631a23e64efc851890dbc7347d88
record_format dspace
spelling oai:doaj.org-article:a130631a23e64efc851890dbc7347d882021-12-02T16:49:15ZGraphene memristive synapses for high precision neuromorphic computing10.1038/s41467-020-19203-z2041-1723https://doaj.org/article/a130631a23e64efc851890dbc7347d882020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19203-zhttps://doaj.org/toc/2041-1723Designing efficient and low power memristors-based neuromorphic systems remains a challenge. Here, the authors present graphene-based multi-level (>16) and non-volatile memristive synapses with arbitrarily programmable conductance states capable of weight assignment based on k-means clustering.Thomas F. SchranghamerAaryan OberoiSaptarshi DasNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Thomas F. Schranghamer
Aaryan Oberoi
Saptarshi Das
Graphene memristive synapses for high precision neuromorphic computing
description Designing efficient and low power memristors-based neuromorphic systems remains a challenge. Here, the authors present graphene-based multi-level (>16) and non-volatile memristive synapses with arbitrarily programmable conductance states capable of weight assignment based on k-means clustering.
format article
author Thomas F. Schranghamer
Aaryan Oberoi
Saptarshi Das
author_facet Thomas F. Schranghamer
Aaryan Oberoi
Saptarshi Das
author_sort Thomas F. Schranghamer
title Graphene memristive synapses for high precision neuromorphic computing
title_short Graphene memristive synapses for high precision neuromorphic computing
title_full Graphene memristive synapses for high precision neuromorphic computing
title_fullStr Graphene memristive synapses for high precision neuromorphic computing
title_full_unstemmed Graphene memristive synapses for high precision neuromorphic computing
title_sort graphene memristive synapses for high precision neuromorphic computing
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/a130631a23e64efc851890dbc7347d88
work_keys_str_mv AT thomasfschranghamer graphenememristivesynapsesforhighprecisionneuromorphiccomputing
AT aaryanoberoi graphenememristivesynapsesforhighprecisionneuromorphiccomputing
AT saptarshidas graphenememristivesynapsesforhighprecisionneuromorphiccomputing
_version_ 1718383412812709888