Graphene memristive synapses for high precision neuromorphic computing
Designing efficient and low power memristors-based neuromorphic systems remains a challenge. Here, the authors present graphene-based multi-level (>16) and non-volatile memristive synapses with arbitrarily programmable conductance states capable of weight assignment based on k-means clustering.
Guardado en:
Autores principales: | Thomas F. Schranghamer, Aaryan Oberoi, Saptarshi Das |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a130631a23e64efc851890dbc7347d88 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neuromorphic computing with multi-memristive synapses
por: Irem Boybat, et al.
Publicado: (2018) -
Evidence of soft bound behaviour in analogue memristive devices for neuromorphic computing
por: Jacopo Frascaroli, et al.
Publicado: (2018) -
Pavlovian conditioning demonstrated with neuromorphic memristive devices
por: Zheng-Hua Tan, et al.
Publicado: (2017) -
Challenges hindering memristive neuromorphic hardware from going mainstream
por: Gina C. Adam, et al.
Publicado: (2018) -
Graphene-based 3D XNOR-VRRAM with ternary precision for neuromorphic computing
por: Batyrbek Alimkhanuly, et al.
Publicado: (2021)