CNN-LSTM-Based Prognostics of Bidirectional Converters for Electric Vehicles’ Machine
This paper proposes an approach to estimate the state of health of DC-DC converters that feed the electrical system of an electric vehicle. They have an important role in providing a smooth and rectified DC voltage to the electric machine. Thus, it is important to diagnose the actual status and pred...
Guardado en:
Autores principales: | Gabriel Rojas-Dueñas, Jordi-Roger Riba, Manuel Moreno-Eguilaz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a147b61670494649810cab3672cb5618 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Forecasting vehicle accelerations using LSTM
por: Takeyuki ONO, et al.
Publicado: (2021) -
A Fault Diagnostic Scheme for Predictive Maintenance of AC/DC Converters in MV/LV Substations
por: Giovanni Betta, et al.
Publicado: (2021) -
State Monitoring Method for Tool Wear in Aerospace Manufacturing Processes Based on a Convolutional Neural Network (CNN)
por: Wei Dai, et al.
Publicado: (2021) -
Circuit Configurable Bidirectional DC-DC Converter for Retired Batteries
por: Jenhao Teng, et al.
Publicado: (2021) -
Software and Hardware Cooperative Acceleration Technology for CNN
por: Li Xinyao, Liu Feiyang, Wen Pengcheng, Li Peng
Publicado: (2021)