A deep learning approach to identify gene targets of a therapeutic for human splicing disorders
Drugs that modify RNA splicing are promising treatments for many genetic diseases. Here the authors show that deep learning strategies can predict drug targets, strongly supporting the use of in silico approaches to expand the therapeutic potential of drugs that modulate RNA splicing.
Enregistré dans:
Auteurs principaux: | Dadi Gao, Elisabetta Morini, Monica Salani, Aram J. Krauson, Anil Chekuri, Neeraj Sharma, Ashok Ragavendran, Serkan Erdin, Emily M. Logan, Wencheng Li, Amal Dakka, Jana Narasimhan, Xin Zhao, Nikolai Naryshkin, Christopher R. Trotta, Kerstin A. Effenberger, Matthew G. Woll, Vijayalakshmi Gabbeta, Gary Karp, Yong Yu, Graham Johnson, William D. Paquette, Garry R. Cutting, Michael E. Talkowski, Susan A. Slaugenhaupt |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a1488d5827774183bb159243db93b815 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
"The Сrimes against Humanity do not Have Statute of Limitations"
par: S. Naryshkin
Publié: (2015) -
Cosmopolitan Islamic Identity and Thought
par: Christopher Cutting
Publié: (2008) -
The Lessons of the National History Teach a Moral Behavior in Politics
par: S. E. Naryshkin
Publié: (2012) -
Out-of-clinic measurement of sweat chloride using a wearable sensor during low-intensity exercise
par: Dong-Hoon Choi, et autres
Publié: (2020) -
Financial and Non-Financial Support of Export
par: A. A. Naryshkin
Publié: (2021)