A deep learning approach to identify gene targets of a therapeutic for human splicing disorders

Drugs that modify RNA splicing are promising treatments for many genetic diseases. Here the authors show that deep learning strategies can predict drug targets, strongly supporting the use of in silico approaches to expand the therapeutic potential of drugs that modulate RNA splicing.

Guardado en:
Detalles Bibliográficos
Autores principales: Dadi Gao, Elisabetta Morini, Monica Salani, Aram J. Krauson, Anil Chekuri, Neeraj Sharma, Ashok Ragavendran, Serkan Erdin, Emily M. Logan, Wencheng Li, Amal Dakka, Jana Narasimhan, Xin Zhao, Nikolai Naryshkin, Christopher R. Trotta, Kerstin A. Effenberger, Matthew G. Woll, Vijayalakshmi Gabbeta, Gary Karp, Yong Yu, Graham Johnson, William D. Paquette, Garry R. Cutting, Michael E. Talkowski, Susan A. Slaugenhaupt
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/a1488d5827774183bb159243db93b815
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares