A deep learning approach to identify gene targets of a therapeutic for human splicing disorders
Drugs that modify RNA splicing are promising treatments for many genetic diseases. Here the authors show that deep learning strategies can predict drug targets, strongly supporting the use of in silico approaches to expand the therapeutic potential of drugs that modulate RNA splicing.
Guardado en:
Autores principales: | Dadi Gao, Elisabetta Morini, Monica Salani, Aram J. Krauson, Anil Chekuri, Neeraj Sharma, Ashok Ragavendran, Serkan Erdin, Emily M. Logan, Wencheng Li, Amal Dakka, Jana Narasimhan, Xin Zhao, Nikolai Naryshkin, Christopher R. Trotta, Kerstin A. Effenberger, Matthew G. Woll, Vijayalakshmi Gabbeta, Gary Karp, Yong Yu, Graham Johnson, William D. Paquette, Garry R. Cutting, Michael E. Talkowski, Susan A. Slaugenhaupt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a1488d5827774183bb159243db93b815 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
"The Сrimes against Humanity do not Have Statute of Limitations"
por: S. Naryshkin
Publicado: (2015) -
Cosmopolitan Islamic Identity and Thought
por: Christopher Cutting
Publicado: (2008) -
The Lessons of the National History Teach a Moral Behavior in Politics
por: S. E. Naryshkin
Publicado: (2012) -
Out-of-clinic measurement of sweat chloride using a wearable sensor during low-intensity exercise
por: Dong-Hoon Choi, et al.
Publicado: (2020) -
Financial and Non-Financial Support of Export
por: A. A. Naryshkin
Publicado: (2021)