Classifying patients with depressive and anxiety disorders according to symptom network structures: A Gaussian graphical mixture model-based clustering.
Patients with mental disorders often suffer from comorbidity. Transdiagnostic understandings of mental disorders are expected to provide more accurate and detailed descriptions of psychopathology and be helpful in developing efficient treatments. Although conventional clustering techniques, such as...
Guardado en:
Autores principales: | Jun Kashihara, Yoshitake Takebayashi, Yoshihiko Kunisato, Masaya Ito |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a14d285ae48044f7a2f43208b511475f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Noradrenergic symptom cluster in depression
por: Montgomery S, et al.
Publicado: (2011) -
Convolutional Autoencoding and Gaussian Mixture Clustering for Unsupervised Beat-to-Beat Heart Rate Estimation of Electrocardiograms from Wearable Sensors
por: Jun Zhong, et al.
Publicado: (2021) -
A Principal Component Analysis-Boosted Dynamic Gaussian Mixture Clustering Model for Ignition Factors of Brazil’s Rainforests
por: Maofa Wang, et al.
Publicado: (2021) -
Gaussian graphical modeling of the serum exposome and metabolome reveals interactions between environmental chemicals and endogenous metabolites
por: Vincent Bessonneau, et al.
Publicado: (2021) -
Fast Approximations of the Jeffreys Divergence between Univariate Gaussian Mixtures via Mixture Conversions to Exponential-Polynomial Distributions
por: Frank Nielsen
Publicado: (2021)