Fundamental limits of electron and nuclear spin qubit lifetimes in an isolated self-assembled quantum dot

Abstract Combining external control with long spin lifetime and coherence is a key challenge for solid state spin qubits. Tunnel coupling with electron Fermi reservoir provides robust charge state control in semiconductor quantum dots, but results in undesired relaxation of electron and nuclear spin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: George Gillard, Ian M. Griffiths, Gautham Ragunathan, Ata Ulhaq, Callum McEwan, Edmund Clarke, Evgeny A. Chekhovich
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/a14ee07b5c1f41418c96d2a4cad0efc1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a14ee07b5c1f41418c96d2a4cad0efc1
record_format dspace
spelling oai:doaj.org-article:a14ee07b5c1f41418c96d2a4cad0efc12021-12-02T13:35:05ZFundamental limits of electron and nuclear spin qubit lifetimes in an isolated self-assembled quantum dot10.1038/s41534-021-00378-22056-6387https://doaj.org/article/a14ee07b5c1f41418c96d2a4cad0efc12021-02-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00378-2https://doaj.org/toc/2056-6387Abstract Combining external control with long spin lifetime and coherence is a key challenge for solid state spin qubits. Tunnel coupling with electron Fermi reservoir provides robust charge state control in semiconductor quantum dots, but results in undesired relaxation of electron and nuclear spins through mechanisms that lack complete understanding. Here, we unravel the contributions of tunnelling-assisted and phonon-assisted spin relaxation mechanisms by systematically adjusting the tunnelling coupling in a wide range, including the limit of an isolated quantum dot. These experiments reveal fundamental limits and trade-offs of quantum dot spin dynamics: while reduced tunnelling can be used to achieve electron spin qubit lifetimes exceeding 1 s, the optical spin initialisation fidelity is reduced below 80%, limited by Auger recombination. Comprehensive understanding of electron-nuclear spin relaxation attained here provides a roadmap for design of the optimal operating conditions in quantum dot spin qubits.George GillardIan M. GriffithsGautham RagunathanAta UlhaqCallum McEwanEdmund ClarkeEvgeny A. ChekhovichNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
spellingShingle Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
George Gillard
Ian M. Griffiths
Gautham Ragunathan
Ata Ulhaq
Callum McEwan
Edmund Clarke
Evgeny A. Chekhovich
Fundamental limits of electron and nuclear spin qubit lifetimes in an isolated self-assembled quantum dot
description Abstract Combining external control with long spin lifetime and coherence is a key challenge for solid state spin qubits. Tunnel coupling with electron Fermi reservoir provides robust charge state control in semiconductor quantum dots, but results in undesired relaxation of electron and nuclear spins through mechanisms that lack complete understanding. Here, we unravel the contributions of tunnelling-assisted and phonon-assisted spin relaxation mechanisms by systematically adjusting the tunnelling coupling in a wide range, including the limit of an isolated quantum dot. These experiments reveal fundamental limits and trade-offs of quantum dot spin dynamics: while reduced tunnelling can be used to achieve electron spin qubit lifetimes exceeding 1 s, the optical spin initialisation fidelity is reduced below 80%, limited by Auger recombination. Comprehensive understanding of electron-nuclear spin relaxation attained here provides a roadmap for design of the optimal operating conditions in quantum dot spin qubits.
format article
author George Gillard
Ian M. Griffiths
Gautham Ragunathan
Ata Ulhaq
Callum McEwan
Edmund Clarke
Evgeny A. Chekhovich
author_facet George Gillard
Ian M. Griffiths
Gautham Ragunathan
Ata Ulhaq
Callum McEwan
Edmund Clarke
Evgeny A. Chekhovich
author_sort George Gillard
title Fundamental limits of electron and nuclear spin qubit lifetimes in an isolated self-assembled quantum dot
title_short Fundamental limits of electron and nuclear spin qubit lifetimes in an isolated self-assembled quantum dot
title_full Fundamental limits of electron and nuclear spin qubit lifetimes in an isolated self-assembled quantum dot
title_fullStr Fundamental limits of electron and nuclear spin qubit lifetimes in an isolated self-assembled quantum dot
title_full_unstemmed Fundamental limits of electron and nuclear spin qubit lifetimes in an isolated self-assembled quantum dot
title_sort fundamental limits of electron and nuclear spin qubit lifetimes in an isolated self-assembled quantum dot
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a14ee07b5c1f41418c96d2a4cad0efc1
work_keys_str_mv AT georgegillard fundamentallimitsofelectronandnuclearspinqubitlifetimesinanisolatedselfassembledquantumdot
AT ianmgriffiths fundamentallimitsofelectronandnuclearspinqubitlifetimesinanisolatedselfassembledquantumdot
AT gauthamragunathan fundamentallimitsofelectronandnuclearspinqubitlifetimesinanisolatedselfassembledquantumdot
AT ataulhaq fundamentallimitsofelectronandnuclearspinqubitlifetimesinanisolatedselfassembledquantumdot
AT callummcewan fundamentallimitsofelectronandnuclearspinqubitlifetimesinanisolatedselfassembledquantumdot
AT edmundclarke fundamentallimitsofelectronandnuclearspinqubitlifetimesinanisolatedselfassembledquantumdot
AT evgenyachekhovich fundamentallimitsofelectronandnuclearspinqubitlifetimesinanisolatedselfassembledquantumdot
_version_ 1718392690682363904