Next generation reservoir computing

Reservoir computers are artificial neural networks that can be trained on small data sets, but require large random matrices and numerous metaparameters. The authors propose an improved reservoir computer that overcomes these limitations and shows advantageous performance for complex forecasting tas...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel J. Gauthier, Erik Bollt, Aaron Griffith, Wendson A. S. Barbosa
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/a188e94135aa40e8af0b78655f0dc46a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a188e94135aa40e8af0b78655f0dc46a
record_format dspace
spelling oai:doaj.org-article:a188e94135aa40e8af0b78655f0dc46a2021-12-02T18:14:23ZNext generation reservoir computing10.1038/s41467-021-25801-22041-1723https://doaj.org/article/a188e94135aa40e8af0b78655f0dc46a2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25801-2https://doaj.org/toc/2041-1723Reservoir computers are artificial neural networks that can be trained on small data sets, but require large random matrices and numerous metaparameters. The authors propose an improved reservoir computer that overcomes these limitations and shows advantageous performance for complex forecasting tasksDaniel J. GauthierErik BolltAaron GriffithWendson A. S. BarbosaNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Daniel J. Gauthier
Erik Bollt
Aaron Griffith
Wendson A. S. Barbosa
Next generation reservoir computing
description Reservoir computers are artificial neural networks that can be trained on small data sets, but require large random matrices and numerous metaparameters. The authors propose an improved reservoir computer that overcomes these limitations and shows advantageous performance for complex forecasting tasks
format article
author Daniel J. Gauthier
Erik Bollt
Aaron Griffith
Wendson A. S. Barbosa
author_facet Daniel J. Gauthier
Erik Bollt
Aaron Griffith
Wendson A. S. Barbosa
author_sort Daniel J. Gauthier
title Next generation reservoir computing
title_short Next generation reservoir computing
title_full Next generation reservoir computing
title_fullStr Next generation reservoir computing
title_full_unstemmed Next generation reservoir computing
title_sort next generation reservoir computing
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a188e94135aa40e8af0b78655f0dc46a
work_keys_str_mv AT danieljgauthier nextgenerationreservoircomputing
AT erikbollt nextgenerationreservoircomputing
AT aarongriffith nextgenerationreservoircomputing
AT wendsonasbarbosa nextgenerationreservoircomputing
_version_ 1718378411259330560