An efficient simulation for quantum secure multiparty computation

Abstract The quantum secure multiparty computation is one of the important properties of secure quantum communication. In this paper, we propose a quantum secure multiparty summation (QSMS) protocol based on (t, n) threshold approach, which can be used in many complex quantum operations. To make thi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kartick Sutradhar, Hari Om
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a19664599ea44052a072fa26ec5485b8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The quantum secure multiparty computation is one of the important properties of secure quantum communication. In this paper, we propose a quantum secure multiparty summation (QSMS) protocol based on (t, n) threshold approach, which can be used in many complex quantum operations. To make this protocol secure and realistic, we combine both the classical and quantum phenomena. The existing protocols have some security and efficiency issues because they use (n, n) threshold approach, where all the honest players need to perform the quantum multiparty summation protocol. We however use a (t, n) threshold approach, where only t honest players need to compute the quantum summation protocol. Compared to other protocols our proposed protocol is more cost-effective, realistic, and secure. We also simulate it using the IBM corporation’s online quantum computer, or quantum experience.