Predicting therapy outcome in a digital mental health intervention for depression and anxiety: A machine learning approach
Objective Predicting the outcomes of individual participants for treatment interventions appears central to making mental healthcare more tailored and effective. However, little work has been done to investigate the performance of machine learning-based predictions within digital mental health inter...
Guardado en:
Autores principales: | Silvan Hornstein, Valerie Forman-Hoffman, Albert Nazander, Kristian Ranta, Kevin Hilbert |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SAGE Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a1c87f1e7a2d4da89785a980cb563b2c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A pragmatic randomized waitlist-controlled effectiveness and cost-effectiveness trial of digital interventions for depression and anxiety
por: Derek Richards, et al.
Publicado: (2020) -
Author Correction: A pragmatic randomized waitlist-controlled effectiveness and cost-effectiveness trial of digital interventions for depression and anxiety
por: Derek Richards, et al.
Publicado: (2020) -
Smartphone apps for depression and anxiety: a systematic review and meta-analysis of techniques to increase engagement
por: Ashley Wu, et al.
Publicado: (2021) -
Cultural adaptation of internet- and mobile-based interventions for mental disorders: a systematic review
por: Kerstin Spanhel, et al.
Publicado: (2021) -
Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery
por: Catherine Adans-Dester, et al.
Publicado: (2020)