Predicting therapy outcome in a digital mental health intervention for depression and anxiety: A machine learning approach
Objective Predicting the outcomes of individual participants for treatment interventions appears central to making mental healthcare more tailored and effective. However, little work has been done to investigate the performance of machine learning-based predictions within digital mental health inter...
Enregistré dans:
Auteurs principaux: | Silvan Hornstein, Valerie Forman-Hoffman, Albert Nazander, Kristian Ranta, Kevin Hilbert |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SAGE Publishing
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a1c87f1e7a2d4da89785a980cb563b2c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A pragmatic randomized waitlist-controlled effectiveness and cost-effectiveness trial of digital interventions for depression and anxiety
par: Derek Richards, et autres
Publié: (2020) -
Author Correction: A pragmatic randomized waitlist-controlled effectiveness and cost-effectiveness trial of digital interventions for depression and anxiety
par: Derek Richards, et autres
Publié: (2020) -
Smartphone apps for depression and anxiety: a systematic review and meta-analysis of techniques to increase engagement
par: Ashley Wu, et autres
Publié: (2021) -
Cultural adaptation of internet- and mobile-based interventions for mental disorders: a systematic review
par: Kerstin Spanhel, et autres
Publié: (2021) -
Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery
par: Catherine Adans-Dester, et autres
Publié: (2020)