AnOxPePred: using deep learning for the prediction of antioxidative properties of peptides
Abstract Dietary antioxidants are an important preservative in food and have been suggested to help in disease prevention. With consumer demands for less synthetic and safer additives in food products, the food industry is searching for antioxidants that can be marketed as natural. Peptides derived...
Guardado en:
Autores principales: | Tobias Hegelund Olsen, Betül Yesiltas, Frederikke Isa Marin, Margarita Pertseva, Pedro J. García-Moreno, Simon Gregersen, Michael Toft Overgaard, Charlotte Jacobsen, Ole Lund, Egon Bech Hansen, Paolo Marcatili |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a1eed535d43b47a08d50159f7cf19979 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Presoja varovalnega učinka gozda pred snežnimi plazovi
por: Simon Pintar, et al.
Publicado: (2016) -
Inferring the molecular and phenotypic impact of amino acid variants with MutPred2
por: Vikas Pejaver, et al.
Publicado: (2020) -
CyclinPred: a SVM-based method for predicting cyclin protein sequences.
por: Mridul K Kalita, et al.
Publicado: (2008) -
AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes.
por: Hao Lin, et al.
Publicado: (2013) -
Prediction Accuracy of Serial Lung Ultrasound in COVID-19 Hospitalized Patients (Pred-Echovid Study)
por: Juan Torres-Macho, et al.
Publicado: (2021)