Signal and noise extraction from analog memory elements for neuromorphic computing
The application of resistive and phase-change memories in neuromorphic computation will require efficient methods to quantify device-to-device and switching variability. Here, the authors assess the impact of a broad range of device switching mechanisms using machine learning regression techniques.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a1f3b1e3f21e4dcd812626edb73f3983 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The application of resistive and phase-change memories in neuromorphic computation will require efficient methods to quantify device-to-device and switching variability. Here, the authors assess the impact of a broad range of device switching mechanisms using machine learning regression techniques. |
---|