Signal and noise extraction from analog memory elements for neuromorphic computing

The application of resistive and phase-change memories in neuromorphic computation will require efficient methods to quantify device-to-device and switching variability. Here, the authors assess the impact of a broad range of device switching mechanisms using machine learning regression techniques.

Guardado en:
Detalles Bibliográficos
Autores principales: N. Gong, T. Idé, S. Kim, I. Boybat, A. Sebastian, V. Narayanan, T. Ando
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/a1f3b1e3f21e4dcd812626edb73f3983
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a1f3b1e3f21e4dcd812626edb73f3983
record_format dspace
spelling oai:doaj.org-article:a1f3b1e3f21e4dcd812626edb73f39832021-12-02T15:34:22ZSignal and noise extraction from analog memory elements for neuromorphic computing10.1038/s41467-018-04485-12041-1723https://doaj.org/article/a1f3b1e3f21e4dcd812626edb73f39832018-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04485-1https://doaj.org/toc/2041-1723The application of resistive and phase-change memories in neuromorphic computation will require efficient methods to quantify device-to-device and switching variability. Here, the authors assess the impact of a broad range of device switching mechanisms using machine learning regression techniques.N. GongT. IdéS. KimI. BoybatA. SebastianV. NarayananT. AndoNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
N. Gong
T. Idé
S. Kim
I. Boybat
A. Sebastian
V. Narayanan
T. Ando
Signal and noise extraction from analog memory elements for neuromorphic computing
description The application of resistive and phase-change memories in neuromorphic computation will require efficient methods to quantify device-to-device and switching variability. Here, the authors assess the impact of a broad range of device switching mechanisms using machine learning regression techniques.
format article
author N. Gong
T. Idé
S. Kim
I. Boybat
A. Sebastian
V. Narayanan
T. Ando
author_facet N. Gong
T. Idé
S. Kim
I. Boybat
A. Sebastian
V. Narayanan
T. Ando
author_sort N. Gong
title Signal and noise extraction from analog memory elements for neuromorphic computing
title_short Signal and noise extraction from analog memory elements for neuromorphic computing
title_full Signal and noise extraction from analog memory elements for neuromorphic computing
title_fullStr Signal and noise extraction from analog memory elements for neuromorphic computing
title_full_unstemmed Signal and noise extraction from analog memory elements for neuromorphic computing
title_sort signal and noise extraction from analog memory elements for neuromorphic computing
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/a1f3b1e3f21e4dcd812626edb73f3983
work_keys_str_mv AT ngong signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing
AT tide signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing
AT skim signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing
AT iboybat signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing
AT asebastian signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing
AT vnarayanan signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing
AT tando signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing
_version_ 1718386853741068288