Signal and noise extraction from analog memory elements for neuromorphic computing
The application of resistive and phase-change memories in neuromorphic computation will require efficient methods to quantify device-to-device and switching variability. Here, the authors assess the impact of a broad range of device switching mechanisms using machine learning regression techniques.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a1f3b1e3f21e4dcd812626edb73f3983 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a1f3b1e3f21e4dcd812626edb73f3983 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a1f3b1e3f21e4dcd812626edb73f39832021-12-02T15:34:22ZSignal and noise extraction from analog memory elements for neuromorphic computing10.1038/s41467-018-04485-12041-1723https://doaj.org/article/a1f3b1e3f21e4dcd812626edb73f39832018-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04485-1https://doaj.org/toc/2041-1723The application of resistive and phase-change memories in neuromorphic computation will require efficient methods to quantify device-to-device and switching variability. Here, the authors assess the impact of a broad range of device switching mechanisms using machine learning regression techniques.N. GongT. IdéS. KimI. BoybatA. SebastianV. NarayananT. AndoNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q N. Gong T. Idé S. Kim I. Boybat A. Sebastian V. Narayanan T. Ando Signal and noise extraction from analog memory elements for neuromorphic computing |
description |
The application of resistive and phase-change memories in neuromorphic computation will require efficient methods to quantify device-to-device and switching variability. Here, the authors assess the impact of a broad range of device switching mechanisms using machine learning regression techniques. |
format |
article |
author |
N. Gong T. Idé S. Kim I. Boybat A. Sebastian V. Narayanan T. Ando |
author_facet |
N. Gong T. Idé S. Kim I. Boybat A. Sebastian V. Narayanan T. Ando |
author_sort |
N. Gong |
title |
Signal and noise extraction from analog memory elements for neuromorphic computing |
title_short |
Signal and noise extraction from analog memory elements for neuromorphic computing |
title_full |
Signal and noise extraction from analog memory elements for neuromorphic computing |
title_fullStr |
Signal and noise extraction from analog memory elements for neuromorphic computing |
title_full_unstemmed |
Signal and noise extraction from analog memory elements for neuromorphic computing |
title_sort |
signal and noise extraction from analog memory elements for neuromorphic computing |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/a1f3b1e3f21e4dcd812626edb73f3983 |
work_keys_str_mv |
AT ngong signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing AT tide signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing AT skim signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing AT iboybat signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing AT asebastian signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing AT vnarayanan signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing AT tando signalandnoiseextractionfromanalogmemoryelementsforneuromorphiccomputing |
_version_ |
1718386853741068288 |