Signal and noise extraction from analog memory elements for neuromorphic computing
The application of resistive and phase-change memories in neuromorphic computation will require efficient methods to quantify device-to-device and switching variability. Here, the authors assess the impact of a broad range of device switching mechanisms using machine learning regression techniques.
Guardado en:
Autores principales: | N. Gong, T. Idé, S. Kim, I. Boybat, A. Sebastian, V. Narayanan, T. Ando |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a1f3b1e3f21e4dcd812626edb73f3983 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neuromorphic computing with multi-memristive synapses
por: Irem Boybat, et al.
Publicado: (2018) -
Current-induced crystallisation in Heusler alloy films for memory potentiation in neuromorphic computation
por: William Frost, et al.
Publicado: (2021) -
A Noise-Resilient Neuromorphic Digit Classifier Based on NOR Flash Memories with Pulse–Width Modulation Scheme
por: Gerardo Malavena, et al.
Publicado: (2021) -
Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics
por: Rohit Abraham John, et al.
Publicado: (2020) -
A Fully Integrated Reprogrammable CMOS-RRAM Compute-in-Memory Coprocessor for Neuromorphic Applications
por: Justin M. Correll, et al.
Publicado: (2020)