Nouvelles données géomorphométriques issues de la théorie des graphes pour l’analyse spatiale

The purpose of this article is to briefly describe the recent advances in the graphs theory using the concept of the minimal spanning tree in geomorphometric terms. The description of the distribution of a grouping of nodes in geographical space can be realised mathematically, giving rise to eleven...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Angela Barthes, Géraldine Planque
Formato: article
Lenguaje:DE
EN
FR
IT
PT
Publicado: Unité Mixte de Recherche 8504 Géographie-cités 2002
Materias:
Acceso en línea:https://doaj.org/article/a226c01cf0ab4679a7e0099785f03089
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The purpose of this article is to briefly describe the recent advances in the graphs theory using the concept of the minimal spanning tree in geomorphometric terms. The description of the distribution of a grouping of nodes in geographical space can be realised mathematically, giving rise to eleven distinct morphometric classes. These classifications constitute the basic spatial models from which it is possible to measure the rate of disorder, which is the deviation from the model. Other constructs than that of order/disorder in spatial organisation are also analysed. With a spatial quantification table, one is able to observe in a single table the models important to the space being analysed and their different rates of disorder.