Nouvelles données géomorphométriques issues de la théorie des graphes pour l’analyse spatiale

The purpose of this article is to briefly describe the recent advances in the graphs theory using the concept of the minimal spanning tree in geomorphometric terms. The description of the distribution of a grouping of nodes in geographical space can be realised mathematically, giving rise to eleven...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Angela Barthes, Géraldine Planque
Formato: article
Lenguaje:DE
EN
FR
IT
PT
Publicado: Unité Mixte de Recherche 8504 Géographie-cités 2002
Materias:
Acceso en línea:https://doaj.org/article/a226c01cf0ab4679a7e0099785f03089
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a226c01cf0ab4679a7e0099785f03089
record_format dspace
spelling oai:doaj.org-article:a226c01cf0ab4679a7e0099785f030892021-12-02T11:09:41ZNouvelles données géomorphométriques issues de la théorie des graphes pour l’analyse spatiale1278-336610.4000/cybergeo.3722https://doaj.org/article/a226c01cf0ab4679a7e0099785f030892002-09-01T00:00:00Zhttp://journals.openedition.org/cybergeo/3722https://doaj.org/toc/1278-3366The purpose of this article is to briefly describe the recent advances in the graphs theory using the concept of the minimal spanning tree in geomorphometric terms. The description of the distribution of a grouping of nodes in geographical space can be realised mathematically, giving rise to eleven distinct morphometric classes. These classifications constitute the basic spatial models from which it is possible to measure the rate of disorder, which is the deviation from the model. Other constructs than that of order/disorder in spatial organisation are also analysed. With a spatial quantification table, one is able to observe in a single table the models important to the space being analysed and their different rates of disorder.Angela BarthesGéraldine PlanqueUnité Mixte de Recherche 8504 Géographie-citésarticlemethodologygraph theorymorphometric modelgeomorphometryspatial analysisGeography (General)G1-922DEENFRITPTCybergeo (2002)
institution DOAJ
collection DOAJ
language DE
EN
FR
IT
PT
topic methodology
graph theory
morphometric model
geomorphometry
spatial analysis
Geography (General)
G1-922
spellingShingle methodology
graph theory
morphometric model
geomorphometry
spatial analysis
Geography (General)
G1-922
Angela Barthes
Géraldine Planque
Nouvelles données géomorphométriques issues de la théorie des graphes pour l’analyse spatiale
description The purpose of this article is to briefly describe the recent advances in the graphs theory using the concept of the minimal spanning tree in geomorphometric terms. The description of the distribution of a grouping of nodes in geographical space can be realised mathematically, giving rise to eleven distinct morphometric classes. These classifications constitute the basic spatial models from which it is possible to measure the rate of disorder, which is the deviation from the model. Other constructs than that of order/disorder in spatial organisation are also analysed. With a spatial quantification table, one is able to observe in a single table the models important to the space being analysed and their different rates of disorder.
format article
author Angela Barthes
Géraldine Planque
author_facet Angela Barthes
Géraldine Planque
author_sort Angela Barthes
title Nouvelles données géomorphométriques issues de la théorie des graphes pour l’analyse spatiale
title_short Nouvelles données géomorphométriques issues de la théorie des graphes pour l’analyse spatiale
title_full Nouvelles données géomorphométriques issues de la théorie des graphes pour l’analyse spatiale
title_fullStr Nouvelles données géomorphométriques issues de la théorie des graphes pour l’analyse spatiale
title_full_unstemmed Nouvelles données géomorphométriques issues de la théorie des graphes pour l’analyse spatiale
title_sort nouvelles données géomorphométriques issues de la théorie des graphes pour l’analyse spatiale
publisher Unité Mixte de Recherche 8504 Géographie-cités
publishDate 2002
url https://doaj.org/article/a226c01cf0ab4679a7e0099785f03089
work_keys_str_mv AT angelabarthes nouvellesdonneesgeomorphometriquesissuesdelatheoriedesgraphespourlanalysespatiale
AT geraldineplanque nouvellesdonneesgeomorphometriquesissuesdelatheoriedesgraphespourlanalysespatiale
_version_ 1718396175464267776