Robust Bilinear Probabilistic Principal Component Analysis
Principal component analysis (PCA) is one of the most popular tools in multivariate exploratory data analysis. Its probabilistic version (PPCA) based on the maximum likelihood procedure provides a probabilistic manner to implement dimension reduction. Recently, the bilinear PPCA (BPPCA) model, which...
Saved in:
Main Authors: | Yaohang Lu, Zhongming Teng |
---|---|
Format: | article |
Language: | EN |
Published: |
MDPI AG
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/a226d30d8ec741a4a23804bedfa1a54b |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
EDITORIAL: New Horizon for Industrial Engineering and Management
by: Ugljesa Marjanovic
Published: (2021) -
Forty's years of quantitative research in China: Retrospectives and perspectives
by: Zongwu Cai, et al.
Published: (2021) -
Editorial Board
Published: (2021) -
Cadena de suministros para la exportación de granos andinos a Estados Unidos
by: José Enrique Guardián-Sedano, et al.
Published: (2019) -
Comparación de tres algoritmos de prueba de permutación aplicados a las medias multivariadas de dos muestras independientes
by: Jaime Carlos Porras Cerrón
Published: (2019)