Tree Internal Defected Imaging Using Model-Driven Deep Learning Network
The health of trees has become an important issue in forestry. How to detect the health of trees quickly and accurately has become a key area of research for scholars in the world. In this paper, a living tree internal defect detection model is established and analyzed using model-driven theory, whe...
Guardado en:
Autores principales: | Hongju Zhou, Liping Sun, Hongwei Zhou, Man Zhao, Xinpei Yuan, Jicheng Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a256c1ff6e1a407c96416c248af5340e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Advanced Technologies for the Optimization of Internal Combustion Engines
por: Cinzia Tornatore, et al.
Publicado: (2021) -
Resonant Airborne Acoustic Emission for Nondestructive Testing and Defect Imaging in Composites
por: Igor Solodov, et al.
Publicado: (2021) -
Spatio-Temporal Deep Learning-Based Methods for Defect Detection: An Industrial Application Study Case
por: Lucas A. da Silva, et al.
Publicado: (2021) -
Data-Driven Convolutional Model for Digital Color Image Demosaicing
por: Francesco de Gioia, et al.
Publicado: (2021) -
Deep Convolutional Neural Network with KNN Regression for Automatic Image Annotation
por: Ramla Bensaci, et al.
Publicado: (2021)