Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka

<p>The absence of sunlight during the winter in the High Arctic results in a strong surface-based atmospheric temperature inversion, especially during clear skies and light surface wind conditions. The inversion suppresses turbulent heat transfer between the ground and the boundary layer. As a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. B. Tikhomirov, G. Lesins, J. R. Drummond
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/a26f3dfeffa24bf4aa28097610afe07f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a26f3dfeffa24bf4aa28097610afe07f
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic Environmental engineering
TA170-171
Earthwork. Foundations
TA715-787
spellingShingle Environmental engineering
TA170-171
Earthwork. Foundations
TA715-787
A. B. Tikhomirov
G. Lesins
J. R. Drummond
Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
description <p>The absence of sunlight during the winter in the High Arctic results in a strong surface-based atmospheric temperature inversion, especially during clear skies and light surface wind conditions. The inversion suppresses turbulent heat transfer between the ground and the boundary layer. As a result, the difference between the surface air temperature, measured at a height of 2 <span class="inline-formula">m</span>, and the ground skin temperature can exceed several degrees Celsius. Such inversions occur very frequently in polar regions, are of interest to understand the mechanisms responsible for surface–atmosphere heat, mass, and momentum exchanges, and are critical for satellite validation studies.</p> <p>In this paper we present the results of operations of two commercial remotely piloted aircraft systems, or drones, at the Polar Environment Atmospheric Research Laboratory, Eureka, Nunavut, Canada, at 80<span class="inline-formula"><sup>∘</sup> N</span> latitude. The drones are the Matrice 100 and Matrice 210 RTK quadcopters manufactured by DJI and were flown over Eureka during the February–March field campaigns in 2017 and 2020. They were equipped with a temperature measurement system built on a Raspberry Pi single-board computer, three platinum-wire temperature sensors, a Global Navigation Satellite System receiver, and a barometric altimeter.</p> <p>We demonstrate that the drones can be effectively used in the extremely challenging High Arctic conditions to measure vertical temperature profiles up to 75 <span class="inline-formula">m</span> above the ground and sea ice surface at ambient temperatures down to <span class="inline-formula">−</span>46 <span class="inline-formula"><sup>∘</sup>C</span>. Our results indicate that the inversion lapse rates within the 0–10 <span class="inline-formula">m</span> altitude range above the ground can reach values of <span class="inline-formula">∼</span> 10–30 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><msup><mi/><mo>∘</mo></msup><mi mathvariant="normal">C</mi><mspace width="0.25em" linebreak="nobreak"/><mo>(</mo><mn mathvariant="normal">100</mn><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">m</mi><msup><mo>)</mo><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="63pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3f7e8df361f9792f4e8e54e96728fb07"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-7123-2021-ie00001.svg" width="63pt" height="15pt" src="amt-14-7123-2021-ie00001.png"/></svg:svg></span></span> (<span class="inline-formula">∼</span> 100–300 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><msup><mi/><mo>∘</mo></msup><mi mathvariant="normal">C</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">km</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="40pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="5f9a5e3d9fe6585b18e5ebb93c674d0f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-7123-2021-ie00002.svg" width="40pt" height="13pt" src="amt-14-7123-2021-ie00002.png"/></svg:svg></span></span>). The results are in good agreement with the coincident surface air temperatures measured at 2, 6, and 10 <span class="inline-formula">m</span> levels at the National Oceanic and Atmospheric Administration flux tower at the Polar Environment Atmospheric Research Laboratory. Above 10 <span class="inline-formula">m</span> more gradual inversion with order-of-magnitude smaller lapse rates is recorded by the drone. This inversion lapse rate agrees well with the results obtained from the radiosonde temperature measurements. Above the sea ice drone temperature profiles are found to have an isothermal layer above a surface-based layer of instability, which is attributed to the heat flux through the sea ice. With the drones we were able to evaluate the influence of local topography on the surface-based inversion structure above the ground and to measure extremely cold temperatures of air that can pool in topographic depressions. The unique technical challenges of conducting drone campaigns in the winter High Arctic are highlighted in the paper.</p>
format article
author A. B. Tikhomirov
G. Lesins
J. R. Drummond
author_facet A. B. Tikhomirov
G. Lesins
J. R. Drummond
author_sort A. B. Tikhomirov
title Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
title_short Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
title_full Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
title_fullStr Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
title_full_unstemmed Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
title_sort drone measurements of surface-based winter temperature inversions in the high arctic at eureka
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/a26f3dfeffa24bf4aa28097610afe07f
work_keys_str_mv AT abtikhomirov dronemeasurementsofsurfacebasedwintertemperatureinversionsinthehigharcticateureka
AT glesins dronemeasurementsofsurfacebasedwintertemperatureinversionsinthehigharcticateureka
AT jrdrummond dronemeasurementsofsurfacebasedwintertemperatureinversionsinthehigharcticateureka
_version_ 1718430453600354304
spelling oai:doaj.org-article:a26f3dfeffa24bf4aa28097610afe07f2021-11-12T13:26:18ZDrone measurements of surface-based winter temperature inversions in the High Arctic at Eureka10.5194/amt-14-7123-20211867-13811867-8548https://doaj.org/article/a26f3dfeffa24bf4aa28097610afe07f2021-11-01T00:00:00Zhttps://amt.copernicus.org/articles/14/7123/2021/amt-14-7123-2021.pdfhttps://doaj.org/toc/1867-1381https://doaj.org/toc/1867-8548<p>The absence of sunlight during the winter in the High Arctic results in a strong surface-based atmospheric temperature inversion, especially during clear skies and light surface wind conditions. The inversion suppresses turbulent heat transfer between the ground and the boundary layer. As a result, the difference between the surface air temperature, measured at a height of 2 <span class="inline-formula">m</span>, and the ground skin temperature can exceed several degrees Celsius. Such inversions occur very frequently in polar regions, are of interest to understand the mechanisms responsible for surface–atmosphere heat, mass, and momentum exchanges, and are critical for satellite validation studies.</p> <p>In this paper we present the results of operations of two commercial remotely piloted aircraft systems, or drones, at the Polar Environment Atmospheric Research Laboratory, Eureka, Nunavut, Canada, at 80<span class="inline-formula"><sup>∘</sup> N</span> latitude. The drones are the Matrice 100 and Matrice 210 RTK quadcopters manufactured by DJI and were flown over Eureka during the February–March field campaigns in 2017 and 2020. They were equipped with a temperature measurement system built on a Raspberry Pi single-board computer, three platinum-wire temperature sensors, a Global Navigation Satellite System receiver, and a barometric altimeter.</p> <p>We demonstrate that the drones can be effectively used in the extremely challenging High Arctic conditions to measure vertical temperature profiles up to 75 <span class="inline-formula">m</span> above the ground and sea ice surface at ambient temperatures down to <span class="inline-formula">−</span>46 <span class="inline-formula"><sup>∘</sup>C</span>. Our results indicate that the inversion lapse rates within the 0–10 <span class="inline-formula">m</span> altitude range above the ground can reach values of <span class="inline-formula">∼</span> 10–30 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><msup><mi/><mo>∘</mo></msup><mi mathvariant="normal">C</mi><mspace width="0.25em" linebreak="nobreak"/><mo>(</mo><mn mathvariant="normal">100</mn><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">m</mi><msup><mo>)</mo><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="63pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3f7e8df361f9792f4e8e54e96728fb07"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-7123-2021-ie00001.svg" width="63pt" height="15pt" src="amt-14-7123-2021-ie00001.png"/></svg:svg></span></span> (<span class="inline-formula">∼</span> 100–300 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><msup><mi/><mo>∘</mo></msup><mi mathvariant="normal">C</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">km</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="40pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="5f9a5e3d9fe6585b18e5ebb93c674d0f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-7123-2021-ie00002.svg" width="40pt" height="13pt" src="amt-14-7123-2021-ie00002.png"/></svg:svg></span></span>). The results are in good agreement with the coincident surface air temperatures measured at 2, 6, and 10 <span class="inline-formula">m</span> levels at the National Oceanic and Atmospheric Administration flux tower at the Polar Environment Atmospheric Research Laboratory. Above 10 <span class="inline-formula">m</span> more gradual inversion with order-of-magnitude smaller lapse rates is recorded by the drone. This inversion lapse rate agrees well with the results obtained from the radiosonde temperature measurements. Above the sea ice drone temperature profiles are found to have an isothermal layer above a surface-based layer of instability, which is attributed to the heat flux through the sea ice. With the drones we were able to evaluate the influence of local topography on the surface-based inversion structure above the ground and to measure extremely cold temperatures of air that can pool in topographic depressions. The unique technical challenges of conducting drone campaigns in the winter High Arctic are highlighted in the paper.</p>A. B. TikhomirovG. LesinsJ. R. DrummondCopernicus PublicationsarticleEnvironmental engineeringTA170-171Earthwork. FoundationsTA715-787ENAtmospheric Measurement Techniques, Vol 14, Pp 7123-7145 (2021)