New Robust Part-Based Model with Affine Transformations for Facial Landmark Localization and Detection in Big Data
In this paper, we developed a new robust part-based model for facial landmark localization and detection via affine transformation. In contrast to the existing works, the new algorithm incorporates affine transformations with the robust regression to tackle the potential effects of outliers and heav...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a270d9f7a4a2454ea8d1ffc4e1175b0d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a270d9f7a4a2454ea8d1ffc4e1175b0d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a270d9f7a4a2454ea8d1ffc4e1175b0d2021-11-15T01:19:17ZNew Robust Part-Based Model with Affine Transformations for Facial Landmark Localization and Detection in Big Data1687-560510.1155/2021/9995074https://doaj.org/article/a270d9f7a4a2454ea8d1ffc4e1175b0d2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/9995074https://doaj.org/toc/1687-5605In this paper, we developed a new robust part-based model for facial landmark localization and detection via affine transformation. In contrast to the existing works, the new algorithm incorporates affine transformations with the robust regression to tackle the potential effects of outliers and heavy sparse noises, occlusions and illuminations. As such, the distorted or misaligned objects can be rectified by affine transformations and the patterns of occlusions and outliers can be explicitly separated from the true underlying objects in big data. Moreover, the search of the optimal parameters and affine transformations is cast as a constrained optimization programming. To mitigate the computations, a new set of equations is derived to update the parameters involved and the affine transformations iteratively in a round-robin manner. Our way to update the parameters compared to the state of the art of the works is relatively better, as we employ a fast alternating direction method for multiplier (ADMM) algorithm that solves the parameters separately. Simulations show that the proposed method outperforms the state-of-the-art works on facial landmark localization and detection on the COFW, HELEN, and LFPW datasets.Chentao ZhangHabte Tadesse LikassaPeidong LiangJielong GuoHindawi LimitedarticleElectronic computers. Computer scienceQA75.5-76.95ENModelling and Simulation in Engineering, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
Electronic computers. Computer science QA75.5-76.95 Chentao Zhang Habte Tadesse Likassa Peidong Liang Jielong Guo New Robust Part-Based Model with Affine Transformations for Facial Landmark Localization and Detection in Big Data |
description |
In this paper, we developed a new robust part-based model for facial landmark localization and detection via affine transformation. In contrast to the existing works, the new algorithm incorporates affine transformations with the robust regression to tackle the potential effects of outliers and heavy sparse noises, occlusions and illuminations. As such, the distorted or misaligned objects can be rectified by affine transformations and the patterns of occlusions and outliers can be explicitly separated from the true underlying objects in big data. Moreover, the search of the optimal parameters and affine transformations is cast as a constrained optimization programming. To mitigate the computations, a new set of equations is derived to update the parameters involved and the affine transformations iteratively in a round-robin manner. Our way to update the parameters compared to the state of the art of the works is relatively better, as we employ a fast alternating direction method for multiplier (ADMM) algorithm that solves the parameters separately. Simulations show that the proposed method outperforms the state-of-the-art works on facial landmark localization and detection on the COFW, HELEN, and LFPW datasets. |
format |
article |
author |
Chentao Zhang Habte Tadesse Likassa Peidong Liang Jielong Guo |
author_facet |
Chentao Zhang Habte Tadesse Likassa Peidong Liang Jielong Guo |
author_sort |
Chentao Zhang |
title |
New Robust Part-Based Model with Affine Transformations for Facial Landmark Localization and Detection in Big Data |
title_short |
New Robust Part-Based Model with Affine Transformations for Facial Landmark Localization and Detection in Big Data |
title_full |
New Robust Part-Based Model with Affine Transformations for Facial Landmark Localization and Detection in Big Data |
title_fullStr |
New Robust Part-Based Model with Affine Transformations for Facial Landmark Localization and Detection in Big Data |
title_full_unstemmed |
New Robust Part-Based Model with Affine Transformations for Facial Landmark Localization and Detection in Big Data |
title_sort |
new robust part-based model with affine transformations for facial landmark localization and detection in big data |
publisher |
Hindawi Limited |
publishDate |
2021 |
url |
https://doaj.org/article/a270d9f7a4a2454ea8d1ffc4e1175b0d |
work_keys_str_mv |
AT chentaozhang newrobustpartbasedmodelwithaffinetransformationsforfaciallandmarklocalizationanddetectioninbigdata AT habtetadesselikassa newrobustpartbasedmodelwithaffinetransformationsforfaciallandmarklocalizationanddetectioninbigdata AT peidongliang newrobustpartbasedmodelwithaffinetransformationsforfaciallandmarklocalizationanddetectioninbigdata AT jielongguo newrobustpartbasedmodelwithaffinetransformationsforfaciallandmarklocalizationanddetectioninbigdata |
_version_ |
1718429001037381632 |