miQC: An adaptive probabilistic framework for quality control of single-cell RNA-sequencing data.
Single-cell RNA-sequencing (scRNA-seq) has made it possible to profile gene expression in tissues at high resolution. An important preprocessing step prior to performing downstream analyses is to identify and remove cells with poor or degraded sample quality using quality control (QC) metrics. Two w...
Guardado en:
Autores principales: | Ariel A Hippen, Matias M Falco, Lukas M Weber, Erdogan Pekcan Erkan, Kaiyang Zhang, Jennifer Anne Doherty, Anna Vähärautio, Casey S Greene, Stephanie C Hicks |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a27474f972ea4229a2ac4f764625b728 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
qc3C: Reference-free quality control for Hi-C sequencing data.
por: Matthew Z DeMaere, et al.
Publicado: (2021) -
DropletQC: improved identification of empty droplets and damaged cells in single-cell RNA-seq data
por: Walter Muskovic, et al.
Publicado: (2021) -
Segmentation of infected region in CT images of COVID-19 patients based on QC-HC U-net
por: Qin Zhang, et al.
Publicado: (2021) -
A unified probabilistic framework for volcanic hazard and eruption forecasting
por: W. Marzocchi, et al.
Publicado: (2021) -
CrowdQC+—A Quality-Control for Crowdsourced Air-Temperature Observations Enabling World-Wide Urban Climate Applications
por: Daniel Fenner, et al.
Publicado: (2021)