Untargeted analysis of first trimester serum to reveal biomarkers of pregnancy complications: a case–control discovery phase study

Abstract Understanding of causal biology and predictive biomarkers are lacking for hypertensive disorders of pregnancy (HDP) and preterm birth (PTB). First-trimester serum specimens from 51 cases of HDP, including 18 cases of pre-eclampsia (PE) and 33 cases of gestational hypertension (GH); 53 cases...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: E. W. Harville, Y.-Y. Li, K. Pan, S. McRitchie, W. Pathmasiri, S. Sumner
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a2860a4011ef4166ad2a9bdd63449dac
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Understanding of causal biology and predictive biomarkers are lacking for hypertensive disorders of pregnancy (HDP) and preterm birth (PTB). First-trimester serum specimens from 51 cases of HDP, including 18 cases of pre-eclampsia (PE) and 33 cases of gestational hypertension (GH); 53 cases of PTB; and 109 controls were obtained from the Global Alliance to Prevent Prematurity and Stillbirth repository. Metabotyping was conducted using liquid chromatography high resolution mass spectroscopy and nuclear magnetic resonance spectroscopy. Multivariable logistic regression was used to identify signals that differed between groups after controlling for confounders. Signals important to predicting HDP and PTB were matched to an in-house physical standards library and public databases. Pathway analysis was conducted using GeneGo MetaCore. Over 400 signals for endogenous and exogenous metabolites that differentiated cases and controls were identified or annotated, and models that included these signals produced substantial improvements in predictive power beyond models that only included known risk factors. Perturbations of the aminoacyl-tRNA biosynthesis, l-threonine, and renal secretion of organic electrolytes pathways were associated with both HDP and PTB, while pathways related to cholesterol transport and metabolism were associated with HDP. This untargeted metabolomics analysis identified signals and common pathways associated with pregnancy complications.