DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features
Android platform has dominated the operating system of mobile devices. However, the dramatic increase of Android malicious applications (malapps) has caused serious software failures to Android system and posed a great threat to users. The effective detection of Android malapps has thus become an em...
Guardado en:
Autores principales: | Wei Wang, Zhenzhen Gao, Meichen Zhao, Yidong Li, Jiqiang Liu, Xiangliang Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a28bca942e4a4fd98a176668511fcf0f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic Algorithm
por: Jaehyeong Lee, et al.
Publicado: (2021) -
Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
por: Altyeb Taha, et al.
Publicado: (2021) -
SAMLDroid: A Static Taint Analysis and Machine Learning Combined High-Accuracy Method for Identifying Android Apps with Location Privacy Leakage Risks
por: Guangwu Hu, et al.
Publicado: (2021) -
Recent Advances in Android Mobile Malware Detection: A Systematic Literature Review
por: Abdulaziz Alzubaidi
Publicado: (2021) -
Hybrid-Based Analysis Impact on Ransomware Detection for Android Systems
por: Rana Almohaini, et al.
Publicado: (2021)