Teaching a neural network to attach and detach electrons from molecules

Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations.

Guardado en:
Detalles Bibliográficos
Autores principales: Roman Zubatyuk, Justin S. Smith, Benjamin T. Nebgen, Sergei Tretiak, Olexandr Isayev
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/a292041c8fcb4567a97c14746760b48e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations.