Teaching a neural network to attach and detach electrons from molecules
Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations.
Saved in:
Main Authors: | , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/a292041c8fcb4567a97c14746760b48e |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations. |
---|