Teaching a neural network to attach and detach electrons from molecules
Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a292041c8fcb4567a97c14746760b48e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a292041c8fcb4567a97c14746760b48e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a292041c8fcb4567a97c14746760b48e2021-12-02T15:07:49ZTeaching a neural network to attach and detach electrons from molecules10.1038/s41467-021-24904-02041-1723https://doaj.org/article/a292041c8fcb4567a97c14746760b48e2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-24904-0https://doaj.org/toc/2041-1723Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations.Roman ZubatyukJustin S. SmithBenjamin T. NebgenSergei TretiakOlexandr IsayevNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Roman Zubatyuk Justin S. Smith Benjamin T. Nebgen Sergei Tretiak Olexandr Isayev Teaching a neural network to attach and detach electrons from molecules |
description |
Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations. |
format |
article |
author |
Roman Zubatyuk Justin S. Smith Benjamin T. Nebgen Sergei Tretiak Olexandr Isayev |
author_facet |
Roman Zubatyuk Justin S. Smith Benjamin T. Nebgen Sergei Tretiak Olexandr Isayev |
author_sort |
Roman Zubatyuk |
title |
Teaching a neural network to attach and detach electrons from molecules |
title_short |
Teaching a neural network to attach and detach electrons from molecules |
title_full |
Teaching a neural network to attach and detach electrons from molecules |
title_fullStr |
Teaching a neural network to attach and detach electrons from molecules |
title_full_unstemmed |
Teaching a neural network to attach and detach electrons from molecules |
title_sort |
teaching a neural network to attach and detach electrons from molecules |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/a292041c8fcb4567a97c14746760b48e |
work_keys_str_mv |
AT romanzubatyuk teachinganeuralnetworktoattachanddetachelectronsfrommolecules AT justinssmith teachinganeuralnetworktoattachanddetachelectronsfrommolecules AT benjamintnebgen teachinganeuralnetworktoattachanddetachelectronsfrommolecules AT sergeitretiak teachinganeuralnetworktoattachanddetachelectronsfrommolecules AT olexandrisayev teachinganeuralnetworktoattachanddetachelectronsfrommolecules |
_version_ |
1718388408415420416 |