Teaching a neural network to attach and detach electrons from molecules

Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations.

Guardado en:
Detalles Bibliográficos
Autores principales: Roman Zubatyuk, Justin S. Smith, Benjamin T. Nebgen, Sergei Tretiak, Olexandr Isayev
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/a292041c8fcb4567a97c14746760b48e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a292041c8fcb4567a97c14746760b48e
record_format dspace
spelling oai:doaj.org-article:a292041c8fcb4567a97c14746760b48e2021-12-02T15:07:49ZTeaching a neural network to attach and detach electrons from molecules10.1038/s41467-021-24904-02041-1723https://doaj.org/article/a292041c8fcb4567a97c14746760b48e2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-24904-0https://doaj.org/toc/2041-1723Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations.Roman ZubatyukJustin S. SmithBenjamin T. NebgenSergei TretiakOlexandr IsayevNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Roman Zubatyuk
Justin S. Smith
Benjamin T. Nebgen
Sergei Tretiak
Olexandr Isayev
Teaching a neural network to attach and detach electrons from molecules
description Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations.
format article
author Roman Zubatyuk
Justin S. Smith
Benjamin T. Nebgen
Sergei Tretiak
Olexandr Isayev
author_facet Roman Zubatyuk
Justin S. Smith
Benjamin T. Nebgen
Sergei Tretiak
Olexandr Isayev
author_sort Roman Zubatyuk
title Teaching a neural network to attach and detach electrons from molecules
title_short Teaching a neural network to attach and detach electrons from molecules
title_full Teaching a neural network to attach and detach electrons from molecules
title_fullStr Teaching a neural network to attach and detach electrons from molecules
title_full_unstemmed Teaching a neural network to attach and detach electrons from molecules
title_sort teaching a neural network to attach and detach electrons from molecules
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a292041c8fcb4567a97c14746760b48e
work_keys_str_mv AT romanzubatyuk teachinganeuralnetworktoattachanddetachelectronsfrommolecules
AT justinssmith teachinganeuralnetworktoattachanddetachelectronsfrommolecules
AT benjamintnebgen teachinganeuralnetworktoattachanddetachelectronsfrommolecules
AT sergeitretiak teachinganeuralnetworktoattachanddetachelectronsfrommolecules
AT olexandrisayev teachinganeuralnetworktoattachanddetachelectronsfrommolecules
_version_ 1718388408415420416