Teaching a neural network to attach and detach electrons from molecules
Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations.
Guardado en:
Autores principales: | Roman Zubatyuk, Justin S. Smith, Benjamin T. Nebgen, Sergei Tretiak, Olexandr Isayev |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a292041c8fcb4567a97c14746760b48e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
por: Justin S. Smith, et al.
Publicado: (2019) -
Artificial intelligence-enhanced quantum chemical method with broad applicability
por: Peikun Zheng, et al.
Publicado: (2021) -
Metabolic profiling of attached and detached metformin and 2-deoxy-D-glucose treated breast cancer cells reveals adaptive changes in metabolome of detached cells
por: Jernej Repas, et al.
Publicado: (2021) -
Detachment and successive re-attachment of multiple, reversibly-binding tethers result in irreversible bacterial adhesion to surfaces
por: Jelmer Sjollema, et al.
Publicado: (2017) -
Active Learning in Bayesian Neural Networks for Bandgap Predictions of Novel Van der Waals Heterostructures
por: Marco Fronzi, et al.
Publicado: (2021)