Long-term stability of computational parameters during approach-avoidance conflict in a transdiagnostic psychiatric patient sample

Abstract Maladaptive behavior during approach-avoidance conflict (AAC) is common to multiple psychiatric disorders. Using computational modeling, we previously reported that individuals with depression, anxiety, and substance use disorders (DEP/ANX; SUDs) exhibited differences in decision uncertaint...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ryan Smith, Namik Kirlic, Jennifer L. Stewart, James Touthang, Rayus Kuplicki, Timothy J. McDermott, Samuel Taylor, Sahib S. Khalsa, Martin P. Paulus, Robin L. Aupperle
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a2960010d25b4ebeb01b5a98125ce34d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a2960010d25b4ebeb01b5a98125ce34d
record_format dspace
spelling oai:doaj.org-article:a2960010d25b4ebeb01b5a98125ce34d2021-12-02T15:03:13ZLong-term stability of computational parameters during approach-avoidance conflict in a transdiagnostic psychiatric patient sample10.1038/s41598-021-91308-x2045-2322https://doaj.org/article/a2960010d25b4ebeb01b5a98125ce34d2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91308-xhttps://doaj.org/toc/2045-2322Abstract Maladaptive behavior during approach-avoidance conflict (AAC) is common to multiple psychiatric disorders. Using computational modeling, we previously reported that individuals with depression, anxiety, and substance use disorders (DEP/ANX; SUDs) exhibited differences in decision uncertainty and sensitivity to negative outcomes versus reward (emotional conflict) relative to healthy controls (HCs). However, it remains unknown whether these computational parameters and group differences are stable over time. We analyzed 1-year follow-up data from a subset of the same participants (N = 325) to assess parameter stability and relationships to other clinical and task measures. We assessed group differences in the entire sample as well as a subset matched for age and IQ across HCs (N = 48), SUDs (N = 29), and DEP/ANX (N = 121). We also assessed 2–3 week reliability in a separate sample of 30 HCs. Emotional conflict and decision uncertainty parameters showed moderate 1-year intra-class correlations (.52 and .46, respectively) and moderate to excellent correlations over the shorter period (.84 and .54, respectively). Similar to previous baseline findings, parameters correlated with multiple response time measures (ps < .001) and self-reported anxiety (r = .30, p < .001) and decision difficulty (r = .44, p < .001). Linear mixed effects analyses revealed that patients remained higher in decision uncertainty (SUDs, p = .009) and lower in emotional conflict (SUDs, p = .004, DEP/ANX, p = .02) relative to HCs. This computational modelling approach may therefore offer relatively stable markers of transdiagnostic psychopathology.Ryan SmithNamik KirlicJennifer L. StewartJames TouthangRayus KuplickiTimothy J. McDermottSamuel TaylorSahib S. KhalsaMartin P. PaulusRobin L. AupperleNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ryan Smith
Namik Kirlic
Jennifer L. Stewart
James Touthang
Rayus Kuplicki
Timothy J. McDermott
Samuel Taylor
Sahib S. Khalsa
Martin P. Paulus
Robin L. Aupperle
Long-term stability of computational parameters during approach-avoidance conflict in a transdiagnostic psychiatric patient sample
description Abstract Maladaptive behavior during approach-avoidance conflict (AAC) is common to multiple psychiatric disorders. Using computational modeling, we previously reported that individuals with depression, anxiety, and substance use disorders (DEP/ANX; SUDs) exhibited differences in decision uncertainty and sensitivity to negative outcomes versus reward (emotional conflict) relative to healthy controls (HCs). However, it remains unknown whether these computational parameters and group differences are stable over time. We analyzed 1-year follow-up data from a subset of the same participants (N = 325) to assess parameter stability and relationships to other clinical and task measures. We assessed group differences in the entire sample as well as a subset matched for age and IQ across HCs (N = 48), SUDs (N = 29), and DEP/ANX (N = 121). We also assessed 2–3 week reliability in a separate sample of 30 HCs. Emotional conflict and decision uncertainty parameters showed moderate 1-year intra-class correlations (.52 and .46, respectively) and moderate to excellent correlations over the shorter period (.84 and .54, respectively). Similar to previous baseline findings, parameters correlated with multiple response time measures (ps < .001) and self-reported anxiety (r = .30, p < .001) and decision difficulty (r = .44, p < .001). Linear mixed effects analyses revealed that patients remained higher in decision uncertainty (SUDs, p = .009) and lower in emotional conflict (SUDs, p = .004, DEP/ANX, p = .02) relative to HCs. This computational modelling approach may therefore offer relatively stable markers of transdiagnostic psychopathology.
format article
author Ryan Smith
Namik Kirlic
Jennifer L. Stewart
James Touthang
Rayus Kuplicki
Timothy J. McDermott
Samuel Taylor
Sahib S. Khalsa
Martin P. Paulus
Robin L. Aupperle
author_facet Ryan Smith
Namik Kirlic
Jennifer L. Stewart
James Touthang
Rayus Kuplicki
Timothy J. McDermott
Samuel Taylor
Sahib S. Khalsa
Martin P. Paulus
Robin L. Aupperle
author_sort Ryan Smith
title Long-term stability of computational parameters during approach-avoidance conflict in a transdiagnostic psychiatric patient sample
title_short Long-term stability of computational parameters during approach-avoidance conflict in a transdiagnostic psychiatric patient sample
title_full Long-term stability of computational parameters during approach-avoidance conflict in a transdiagnostic psychiatric patient sample
title_fullStr Long-term stability of computational parameters during approach-avoidance conflict in a transdiagnostic psychiatric patient sample
title_full_unstemmed Long-term stability of computational parameters during approach-avoidance conflict in a transdiagnostic psychiatric patient sample
title_sort long-term stability of computational parameters during approach-avoidance conflict in a transdiagnostic psychiatric patient sample
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a2960010d25b4ebeb01b5a98125ce34d
work_keys_str_mv AT ryansmith longtermstabilityofcomputationalparametersduringapproachavoidanceconflictinatransdiagnosticpsychiatricpatientsample
AT namikkirlic longtermstabilityofcomputationalparametersduringapproachavoidanceconflictinatransdiagnosticpsychiatricpatientsample
AT jenniferlstewart longtermstabilityofcomputationalparametersduringapproachavoidanceconflictinatransdiagnosticpsychiatricpatientsample
AT jamestouthang longtermstabilityofcomputationalparametersduringapproachavoidanceconflictinatransdiagnosticpsychiatricpatientsample
AT rayuskuplicki longtermstabilityofcomputationalparametersduringapproachavoidanceconflictinatransdiagnosticpsychiatricpatientsample
AT timothyjmcdermott longtermstabilityofcomputationalparametersduringapproachavoidanceconflictinatransdiagnosticpsychiatricpatientsample
AT samueltaylor longtermstabilityofcomputationalparametersduringapproachavoidanceconflictinatransdiagnosticpsychiatricpatientsample
AT sahibskhalsa longtermstabilityofcomputationalparametersduringapproachavoidanceconflictinatransdiagnosticpsychiatricpatientsample
AT martinppaulus longtermstabilityofcomputationalparametersduringapproachavoidanceconflictinatransdiagnosticpsychiatricpatientsample
AT robinlaupperle longtermstabilityofcomputationalparametersduringapproachavoidanceconflictinatransdiagnosticpsychiatricpatientsample
_version_ 1718389032986083328