A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering

Imbalanced data classification is a major challenge in the field of data mining and machine learning, and oversampling algorithms are a widespread technique for re-sampling imbalanced data. To address the problems that existing oversampling methods tend to introduce noise points and generate overlap...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jie Cao*, Yong Shi
Formato: article
Lenguaje:EN
Publicado: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2021
Materias:
Acceso en línea:https://doaj.org/article/a2a5e7d3a4c74626ac5f5226553aa6ff
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Imbalanced data classification is a major challenge in the field of data mining and machine learning, and oversampling algorithms are a widespread technique for re-sampling imbalanced data. To address the problems that existing oversampling methods tend to introduce noise points and generate overlapping instances, in this paper, we propose a novel oversampling method based on density peaks clustering. Firstly, density peaks clustering algorithm is used to cluster minority instances while screening outlier points. Secondly, sampling weights are assigned according to the size of clustered sub-clusters, and new instances are synthesized by interpolating between cluster cores and other instances of the same sub-cluster. Finally, comparative experiments are conducted on both the artificial data and KEEL datasets. The experiments validate the feasibility and effectiveness of the algorithm and improve the classification accuracy of the imbalanced data.