Liver Targeting of Daclatasvir via Tailoring Sterically Stabilized Bilosomes: Fabrication, Comparative In Vitro/In Vivo Appraisal and Biodistribution Studies

Mohamed El-Nabarawi,1 Mohamed Nafady,2 Shahira Elmenshawe,3 Marwa Elkarmalawy,4 Mahmoud Teaima1 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; 2Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University, Beni-S...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: El-Nabarawi M, Nafady M, Elmenshawe S, Elkarmalawy M, Teaima M
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2021
Materias:
Acceso en línea:https://doaj.org/article/a2aa5588f39c45a9b0ba265c8c74606d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a2aa5588f39c45a9b0ba265c8c74606d
record_format dspace
spelling oai:doaj.org-article:a2aa5588f39c45a9b0ba265c8c74606d2021-12-02T19:14:25ZLiver Targeting of Daclatasvir via Tailoring Sterically Stabilized Bilosomes: Fabrication, Comparative In Vitro/In Vivo Appraisal and Biodistribution Studies1178-2013https://doaj.org/article/a2aa5588f39c45a9b0ba265c8c74606d2021-09-01T00:00:00Zhttps://www.dovepress.com/liver-targeting-of-daclatasvir-via-tailoring-sterically-stabilized-bil-peer-reviewed-fulltext-article-IJNhttps://doaj.org/toc/1178-2013Mohamed El-Nabarawi,1 Mohamed Nafady,2 Shahira Elmenshawe,3 Marwa Elkarmalawy,4 Mahmoud Teaima1 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; 2Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt; 4Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University of Technology and Information, Cairo, EgyptCorrespondence: Shahira Elmenshawe Email Shahira.elmenshawe@yahoo.comIntroduction: Hepatitis C virus (HCV) is a significant public health concern that threatens millions of individuals worldwide. Daclatasvir (DAC) is a promising direct-acting antiviral approved for treating HCV infection around the world. The goal of this study was to encapsulate DAC into novel polyethylene glycol (PEG) decorated bilosomes (PEG-BILS) to achieve enhanced drug delivery to the liver.Methods: DAC-loaded BILS were primed by a thin film hydrating technique. The study of the impact of various formulation variables on the properties of BILS and selection of the optimal formulation was generated using Design-Expert® software. The optimum preparation was then pegylated via the incorporation of PEG-6-stearate (5% w/w, with respect to the lipid phase).Results: The optimum PEG-BILS formulation, containing PL:SDC ratio (5:1), 5 mg cholesterol, and 30 min sonication, yielded spherical vesicles in the nanoscale (200± 15.2 nm), elevated percent of entrapment efficiency (95.5± 7.77%), and a sustained release profile of DAC with 35.11± 2.3% release. In vivo and drug distribution studies revealed an enhanced hepatocellular delivery of DAC-loaded PEG-BILS compared to DAC-unPEG-BILS and DAC suspension, where DAC-PEG-BILS achieved 1.19- and 1.54 times the AUC0– 24 of DAC-unPEG-BILS and DAC suspension, respectively. Compared with DAC-unPEG-BILS and DAC suspension, DAC-PEG-BILS delivered about 2 and 3 times higher DAC into the liver, respectively.Conclusion: The innovative encapsulation of DAC-PEG-BILS has a great potential for liver targeting.Keywords: antiviral drug, nanodrug delivery system, bile-based nanovesicles, Box–Behnken approach, liver targeting parameters, pharmacokinetic, bioavailabilityEl-Nabarawi MNafady MElmenshawe SElkarmalawy MTeaima MDove Medical Pressarticleantiviral drug – nano drug delivery system- bile based nano-vesicles- box-behnken approach -liver targeting parameters – pharmacokinetic- bioavailabilityMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 16, Pp 6413-6426 (2021)
institution DOAJ
collection DOAJ
language EN
topic antiviral drug – nano drug delivery system- bile based nano-vesicles- box-behnken approach -liver targeting parameters – pharmacokinetic- bioavailability
Medicine (General)
R5-920
spellingShingle antiviral drug – nano drug delivery system- bile based nano-vesicles- box-behnken approach -liver targeting parameters – pharmacokinetic- bioavailability
Medicine (General)
R5-920
El-Nabarawi M
Nafady M
Elmenshawe S
Elkarmalawy M
Teaima M
Liver Targeting of Daclatasvir via Tailoring Sterically Stabilized Bilosomes: Fabrication, Comparative In Vitro/In Vivo Appraisal and Biodistribution Studies
description Mohamed El-Nabarawi,1 Mohamed Nafady,2 Shahira Elmenshawe,3 Marwa Elkarmalawy,4 Mahmoud Teaima1 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; 2Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt; 4Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University of Technology and Information, Cairo, EgyptCorrespondence: Shahira Elmenshawe Email Shahira.elmenshawe@yahoo.comIntroduction: Hepatitis C virus (HCV) is a significant public health concern that threatens millions of individuals worldwide. Daclatasvir (DAC) is a promising direct-acting antiviral approved for treating HCV infection around the world. The goal of this study was to encapsulate DAC into novel polyethylene glycol (PEG) decorated bilosomes (PEG-BILS) to achieve enhanced drug delivery to the liver.Methods: DAC-loaded BILS were primed by a thin film hydrating technique. The study of the impact of various formulation variables on the properties of BILS and selection of the optimal formulation was generated using Design-Expert® software. The optimum preparation was then pegylated via the incorporation of PEG-6-stearate (5% w/w, with respect to the lipid phase).Results: The optimum PEG-BILS formulation, containing PL:SDC ratio (5:1), 5 mg cholesterol, and 30 min sonication, yielded spherical vesicles in the nanoscale (200± 15.2 nm), elevated percent of entrapment efficiency (95.5± 7.77%), and a sustained release profile of DAC with 35.11± 2.3% release. In vivo and drug distribution studies revealed an enhanced hepatocellular delivery of DAC-loaded PEG-BILS compared to DAC-unPEG-BILS and DAC suspension, where DAC-PEG-BILS achieved 1.19- and 1.54 times the AUC0– 24 of DAC-unPEG-BILS and DAC suspension, respectively. Compared with DAC-unPEG-BILS and DAC suspension, DAC-PEG-BILS delivered about 2 and 3 times higher DAC into the liver, respectively.Conclusion: The innovative encapsulation of DAC-PEG-BILS has a great potential for liver targeting.Keywords: antiviral drug, nanodrug delivery system, bile-based nanovesicles, Box–Behnken approach, liver targeting parameters, pharmacokinetic, bioavailability
format article
author El-Nabarawi M
Nafady M
Elmenshawe S
Elkarmalawy M
Teaima M
author_facet El-Nabarawi M
Nafady M
Elmenshawe S
Elkarmalawy M
Teaima M
author_sort El-Nabarawi M
title Liver Targeting of Daclatasvir via Tailoring Sterically Stabilized Bilosomes: Fabrication, Comparative In Vitro/In Vivo Appraisal and Biodistribution Studies
title_short Liver Targeting of Daclatasvir via Tailoring Sterically Stabilized Bilosomes: Fabrication, Comparative In Vitro/In Vivo Appraisal and Biodistribution Studies
title_full Liver Targeting of Daclatasvir via Tailoring Sterically Stabilized Bilosomes: Fabrication, Comparative In Vitro/In Vivo Appraisal and Biodistribution Studies
title_fullStr Liver Targeting of Daclatasvir via Tailoring Sterically Stabilized Bilosomes: Fabrication, Comparative In Vitro/In Vivo Appraisal and Biodistribution Studies
title_full_unstemmed Liver Targeting of Daclatasvir via Tailoring Sterically Stabilized Bilosomes: Fabrication, Comparative In Vitro/In Vivo Appraisal and Biodistribution Studies
title_sort liver targeting of daclatasvir via tailoring sterically stabilized bilosomes: fabrication, comparative in vitro/in vivo appraisal and biodistribution studies
publisher Dove Medical Press
publishDate 2021
url https://doaj.org/article/a2aa5588f39c45a9b0ba265c8c74606d
work_keys_str_mv AT elnabarawim livertargetingofdaclatasvirviatailoringstericallystabilizedbilosomesfabricationcomparativeinvitroinvivoappraisalandbiodistributionstudies
AT nafadym livertargetingofdaclatasvirviatailoringstericallystabilizedbilosomesfabricationcomparativeinvitroinvivoappraisalandbiodistributionstudies
AT elmenshawes livertargetingofdaclatasvirviatailoringstericallystabilizedbilosomesfabricationcomparativeinvitroinvivoappraisalandbiodistributionstudies
AT elkarmalawym livertargetingofdaclatasvirviatailoringstericallystabilizedbilosomesfabricationcomparativeinvitroinvivoappraisalandbiodistributionstudies
AT teaimam livertargetingofdaclatasvirviatailoringstericallystabilizedbilosomesfabricationcomparativeinvitroinvivoappraisalandbiodistributionstudies
_version_ 1718376989657661440