Semantic Point Cloud-Based Adaptive Multiple Object Detection and Tracking for Autonomous Vehicles
LiDAR-based Multiple Object Detection and Tracking (MODT) is one of the essential tasks in autonomous driving. Since MODT is directly related to the safety of an autonomous vehicle, it is critical to provide reliable information about the surrounding objects. For that reason, we propose a semantic p...
Guardado en:
Autores principales: | Soyeong Kim, Jinsu Ha, Kichun Jo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a2b6e3daa5454c0ba9d4d25f32e31a1b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Annotation Tool and Urban Dataset for 3D Point Cloud Semantic Segmentation
por: Muhammad Ibrahim, et al.
Publicado: (2021) -
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
por: Genping Zhao, et al.
Publicado: (2021) -
A Coarse-to-Fine Approach for Rock Bolt Detection From 3D Point Clouds
por: Sarp Saydam, et al.
Publicado: (2021) -
Forest Structural Complexity Tool—An Open Source, Fully-Automated Tool for Measuring Forest Point Clouds
por: Sean Krisanski, et al.
Publicado: (2021) -
Optimizing Urban LiDAR Flight Path Planning Using a Genetic Algorithm and a Dual Parallel Computing Framework
por: Anh Vu Vo, et al.
Publicado: (2021)