Semantic Point Cloud-Based Adaptive Multiple Object Detection and Tracking for Autonomous Vehicles
LiDAR-based Multiple Object Detection and Tracking (MODT) is one of the essential tasks in autonomous driving. Since MODT is directly related to the safety of an autonomous vehicle, it is critical to provide reliable information about the surrounding objects. For that reason, we propose a semantic p...
Enregistré dans:
Auteurs principaux: | Soyeong Kim, Jinsu Ha, Kichun Jo |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a2b6e3daa5454c0ba9d4d25f32e31a1b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Annotation Tool and Urban Dataset for 3D Point Cloud Semantic Segmentation
par: Muhammad Ibrahim, et autres
Publié: (2021) -
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
par: Genping Zhao, et autres
Publié: (2021) -
A Coarse-to-Fine Approach for Rock Bolt Detection From 3D Point Clouds
par: Sarp Saydam, et autres
Publié: (2021) -
Forest Structural Complexity Tool—An Open Source, Fully-Automated Tool for Measuring Forest Point Clouds
par: Sean Krisanski, et autres
Publié: (2021) -
Optimizing Urban LiDAR Flight Path Planning Using a Genetic Algorithm and a Dual Parallel Computing Framework
par: Anh Vu Vo, et autres
Publié: (2021)