An Attention-Based Word-Level Interaction Model for Knowledge Base Relation Detection
Relation detection plays a crucial role in knowledge base question answering, and it is challenging because of the high variance of relation expression in real-world questions. Traditional relation detection models based on deep learning follow an encoding-comparing paradigm, where the question and...
Enregistré dans:
Auteurs principaux: | Hongzhi Zhang, Guandong Xu, Xiao Liang, Guangluan Xu, Feng Li, Kun Fu, Lei Wang, Tinglei Huang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a2b8ec9f03314e2cbec6c7ecdee5a5fb |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Adversarial Learning with Bidirectional Attention for Visual Question Answering
par: Qifeng Li, et autres
Publié: (2021) -
A Knowledge-Based Sense Disambiguation Method to Semantically Enhanced NL Question for Restricted Domain
par: Ammar Arbaaeen, et autres
Publié: (2021) -
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
par: V. Golovachyova, et autres
Publié: (2020) -
Attention-Based Sign Language Recognition Network Utilizing Keyframe Sampling and Skeletal Features
par: Wei Pan, et autres
Publié: (2020) -
A Comparison between Word Tree Branch Method and Interactive Word Wall to Improve Student's Vocabulary
par: Ribka Purnamasari, et autres
Publié: (2018)