Global Bounds for the Generalized Jensen Functional with Applications
In this article we give sharp global bounds for the generalized Jensen functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>n</mi></msub><mr...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a2c0c3c2e0ee4ffeb51ad8fdd8335796 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a2c0c3c2e0ee4ffeb51ad8fdd8335796 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a2c0c3c2e0ee4ffeb51ad8fdd83357962021-11-25T19:06:47ZGlobal Bounds for the Generalized Jensen Functional with Applications10.3390/sym131121052073-8994https://doaj.org/article/a2c0c3c2e0ee4ffeb51ad8fdd83357962021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2105https://doaj.org/toc/2073-8994In this article we give sharp global bounds for the generalized Jensen functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>n</mi></msub><mrow><mo stretchy="false">(</mo><mi>g</mi><mo>,</mo><mi>h</mi><mo>;</mo><mi mathvariant="bold">p</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. In particular, exact bounds are determined for the generalized power mean in terms from the class of Stolarsky means. As a consequence, we obtain the best possible global converses of quotients and differences of the generalized arithmetic, geometric and harmonic means.Slavko SimićBandar Bin-MohsinMDPI AGarticleJensen functionalA-G-H inequalitiesglobal boundspower meansconvex functionsMathematicsQA1-939ENSymmetry, Vol 13, Iss 2105, p 2105 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Jensen functional A-G-H inequalities global bounds power means convex functions Mathematics QA1-939 |
spellingShingle |
Jensen functional A-G-H inequalities global bounds power means convex functions Mathematics QA1-939 Slavko Simić Bandar Bin-Mohsin Global Bounds for the Generalized Jensen Functional with Applications |
description |
In this article we give sharp global bounds for the generalized Jensen functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>n</mi></msub><mrow><mo stretchy="false">(</mo><mi>g</mi><mo>,</mo><mi>h</mi><mo>;</mo><mi mathvariant="bold">p</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. In particular, exact bounds are determined for the generalized power mean in terms from the class of Stolarsky means. As a consequence, we obtain the best possible global converses of quotients and differences of the generalized arithmetic, geometric and harmonic means. |
format |
article |
author |
Slavko Simić Bandar Bin-Mohsin |
author_facet |
Slavko Simić Bandar Bin-Mohsin |
author_sort |
Slavko Simić |
title |
Global Bounds for the Generalized Jensen Functional with Applications |
title_short |
Global Bounds for the Generalized Jensen Functional with Applications |
title_full |
Global Bounds for the Generalized Jensen Functional with Applications |
title_fullStr |
Global Bounds for the Generalized Jensen Functional with Applications |
title_full_unstemmed |
Global Bounds for the Generalized Jensen Functional with Applications |
title_sort |
global bounds for the generalized jensen functional with applications |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/a2c0c3c2e0ee4ffeb51ad8fdd8335796 |
work_keys_str_mv |
AT slavkosimic globalboundsforthegeneralizedjensenfunctionalwithapplications AT bandarbinmohsin globalboundsforthegeneralizedjensenfunctionalwithapplications |
_version_ |
1718410295719755776 |