Global Bounds for the Generalized Jensen Functional with Applications

In this article we give sharp global bounds for the generalized Jensen functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>n</mi></msub><mr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Slavko Simić, Bandar Bin-Mohsin
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/a2c0c3c2e0ee4ffeb51ad8fdd8335796
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a2c0c3c2e0ee4ffeb51ad8fdd8335796
record_format dspace
spelling oai:doaj.org-article:a2c0c3c2e0ee4ffeb51ad8fdd83357962021-11-25T19:06:47ZGlobal Bounds for the Generalized Jensen Functional with Applications10.3390/sym131121052073-8994https://doaj.org/article/a2c0c3c2e0ee4ffeb51ad8fdd83357962021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2105https://doaj.org/toc/2073-8994In this article we give sharp global bounds for the generalized Jensen functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>n</mi></msub><mrow><mo stretchy="false">(</mo><mi>g</mi><mo>,</mo><mi>h</mi><mo>;</mo><mi mathvariant="bold">p</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. In particular, exact bounds are determined for the generalized power mean in terms from the class of Stolarsky means. As a consequence, we obtain the best possible global converses of quotients and differences of the generalized arithmetic, geometric and harmonic means.Slavko SimićBandar Bin-MohsinMDPI AGarticleJensen functionalA-G-H inequalitiesglobal boundspower meansconvex functionsMathematicsQA1-939ENSymmetry, Vol 13, Iss 2105, p 2105 (2021)
institution DOAJ
collection DOAJ
language EN
topic Jensen functional
A-G-H inequalities
global bounds
power means
convex functions
Mathematics
QA1-939
spellingShingle Jensen functional
A-G-H inequalities
global bounds
power means
convex functions
Mathematics
QA1-939
Slavko Simić
Bandar Bin-Mohsin
Global Bounds for the Generalized Jensen Functional with Applications
description In this article we give sharp global bounds for the generalized Jensen functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>n</mi></msub><mrow><mo stretchy="false">(</mo><mi>g</mi><mo>,</mo><mi>h</mi><mo>;</mo><mi mathvariant="bold">p</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. In particular, exact bounds are determined for the generalized power mean in terms from the class of Stolarsky means. As a consequence, we obtain the best possible global converses of quotients and differences of the generalized arithmetic, geometric and harmonic means.
format article
author Slavko Simić
Bandar Bin-Mohsin
author_facet Slavko Simić
Bandar Bin-Mohsin
author_sort Slavko Simić
title Global Bounds for the Generalized Jensen Functional with Applications
title_short Global Bounds for the Generalized Jensen Functional with Applications
title_full Global Bounds for the Generalized Jensen Functional with Applications
title_fullStr Global Bounds for the Generalized Jensen Functional with Applications
title_full_unstemmed Global Bounds for the Generalized Jensen Functional with Applications
title_sort global bounds for the generalized jensen functional with applications
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/a2c0c3c2e0ee4ffeb51ad8fdd8335796
work_keys_str_mv AT slavkosimic globalboundsforthegeneralizedjensenfunctionalwithapplications
AT bandarbinmohsin globalboundsforthegeneralizedjensenfunctionalwithapplications
_version_ 1718410295719755776